Congzhi Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7796348/publications.pdf

Version: 2024-02-01

50	1,354	21	36
papers	citations	h-index	g-index
51	51	51	1320
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Highly stable actinide(III) complexes supported by doubly aromatic ligands. Physical Chemistry Chemical Physics, 2022, , .	2.8	1
2	Theoretical prediction of chiral actinide endohedral borospherenes. New Journal of Chemistry, 2021, 45, 6803-6810.	2.8	4
3	Theoretical insights into the possible applications of amidoxime-based adsorbents in neptunium and plutonium separation. Dalton Transactions, 2021, 50, 15576-15584.	3.3	5
4	Quantum chemical studies of selective back-extraction of Am(III) from Eu(III) and Cm(III) with two hydrophilic 1,10-phenanthroline-2,9-bis-triazolyl ligands. Radiochimica Acta, 2020, 108, 517-526.	1,2	11
5	Complexation of trivalent lanthanides and actinides with diethylenetriaminepentaacetic acid: Theoretical unraveling of bond covalency. Journal of Molecular Liquids, 2020, 299, 112174.	4.9	18
6	Theoretical Insights into Modification of Nitrogen-Donor Ligands to Improve Performance on Am(III)/Eu(III) Separation. Inorganic Chemistry, 2020, 59, 3221-3231.	4.0	23
7	Theoretical Study on the Reduction Mechanism of Np(VI) by Hydrazine Derivatives. Journal of Physical Chemistry A, 2020, 124, 3720-3729.	2.5	6
8	Theoretical Insights into the Selective Extraction of Americium(III) over Europium(III) with Dithioamide-Based Ligands. Inorganic Chemistry, 2019, 58, 10047-10056.	4.0	48
9	Theoretical insights on the complexation of Am(III) and Cm(III) with amide-type ligands. Journal of Radioanalytical and Nuclear Chemistry, 2019, 322, 993-1002.	1.5	11
10	Separation of actinides from lanthanides associated with spent nuclear fuel reprocessing in China: current status and future perspectives. Radiochimica Acta, 2019, 107, 951-964.	1.2	16
11	Modification of a Carbon Nanobelt with Actinides Th–Am: A Density Functional Theory Study. Journal of Physical Chemistry A, 2019, 123, 4900-4907.	2.5	3
12	A Theoretical Study on Divalent Heavier Group 14 Complexes as Promising Donor Ligands for Building Uranium–Metal Bonds. Organometallics, 2019, 38, 1963-1972.	2.3	10
13	Understanding Am ³⁺ /Cm ³⁺ separation with H ₄ TPAEN and its hydrophilic derivatives: a quantum chemical study. Physical Chemistry Chemical Physics, 2018, 20, 14031-14039.	2.8	23
14	Insight into the Extraction Mechanism of Americium(III) over Europium(III) with Pyridylpyrazole: A Relativistic Quantum Chemistry Study. Journal of Physical Chemistry A, 2018, 122, 4499-4507.	2.5	32
15	Uncovering the impact of  capsule' shaped amine-type ligands on Am(<scp>iii</scp>)/Eu(<scp>iii</scp>) separation. Physical Chemistry Chemical Physics, 2018, 20, 1030-1038.	2.8	24
16	Theoretical Insights into Preorganized Pyridylpyrazole-Based Ligands toward the Separation of Am(III)/Eu(III). Inorganic Chemistry, 2018, 57, 14810-14820.	4.0	48
17	Theoretical Study on Unsupported Uranium–Metal Bonding in Uranium–Group 8 Complexes. Organometallics, 2018, 37, 3678-3686.	2.3	24
18	Influence of complexing species on the extraction of trivalent actinides from lanthanides with CyMe4–BTBP: a theoretical study. Journal of Radioanalytical and Nuclear Chemistry, 2018, 318, 1453-1463.	1.5	11

#	Article	IF	CITATIONS
19	Complexation of vanadium with amidoxime and carboxyl groups: uncovering the competitive role of vanadium in uranium extraction from seawater. Radiochimica Acta, 2017, 105, 541-553.	1.2	19
20	Two novel thorium organic frameworks constructed by bi- and tritopic ligands. Radiochimica Acta, 2017, 105, 531-539.	1.2	1
21	A theoretical study on geometry, bonding nature, and stability of several anhydrous and hydrated In(III), Gd(III) and Yb(III) complexes in liquid scintillator solvents. Inorganica Chimica Acta, 2017, 463, 20-28.	2.4	2
22	Exploring New Assembly Modes of Uranyl Terephthalate: Templated Syntheses and Structural Regulation of a Series of Rare 2D → 3D Polycatenated Frameworks. Inorganic Chemistry, 2017, 56, 7694-7706.	4.0	37
23	Theoretically unraveling the separation of Am(<scp>iii</scp>)/Eu(<scp>iii</scp>): insights from mixed N,O-donor ligands with variations of central heterocyclic moieties. Physical Chemistry Chemical Physics, 2017, 19, 26969-26979.	2.8	69
24	Solventâ€Dependent Synthesis of Porous Anionic Uranyl–Organic Frameworks Featuring a Highly Symmetrical (3,4)â€Connected <i>ctn</i> or <i>bor</i> Topology for Selective Dye Adsorption. Chemistry - A European Journal, 2017, 23, 529-532.	3.3	57
25	Binuclear trivalent and tetravalent uranium halides and cyanides supported by cyclooctatetraene ligands. Radiochimica Acta, 2017, 105, 21-32.	1.2	1
26	The redox mechanism of Np ^{VI} with hydrazine: a DFT study. RSC Advances, 2016, 6, 109045-109053.	3.6	10
27	Two-Dimensional Inorganic Cationic Network of Thorium Iodate Chloride with Unique Halogen–Halogen Bonds. Inorganic Chemistry, 2016, 55, 8570-8575.	4.0	8
28	Novel Uranyl Coordination Polymers Based on Quinoline-Containing Dicarboxylate by Altering Auxiliary Ligands: From 1D Chain to 3D Framework. Crystal Growth and Design, 2016, 16, 4886-4896.	3.0	27
29	Theoretical insight into the binding affinity enhancement of serine with the uranyl ion through phosphorylation. RSC Advances, 2016, 6, 69773-69781.	3.6	15
30	Adsorption of uranyl species on hydroxylated titanium carbide nanosheet: A first-principles study. Journal of Hazardous Materials, 2016, 308, 402-410.	12.4	115
31	\hat{I}^3 -Radiation effect on Th ⁴⁺ extraction behaviour of TODGA/[C ₂ mim][NTf ₂]: identification and extractability study of radiolytic products. RSC Advances, 2016, 6, 7626-7632.	3.6	6
32	Theoretical studies on the complexation of Eu(III) and Am(III) with HDEHP: structure, bonding nature and stability. Science China Chemistry, 2016, 59, 324-331.	8.2	29
33	Theoretical Investigation on Incorporation and Diffusion Properties of Xe in Uranium Mononitride. Journal of Physical Chemistry C, 2015, 119, 5783-5789.	3.1	14
34	Theoretical investigation on the solution behaviors of Ba and Zr in uranium dinitride. Science China Chemistry, 2015, 58, 1891-1897.	8.2	3
35	Halogen Bonded Three-Dimensional Uranyl–Organic Compounds with Unprecedented Halogen–Halogen Interactions and Structure Diversity upon Variation of Halogen Substitution. Crystal Growth and Design, 2015, 15, 1395-1406.	3.0	36
36	Terminal U≡E (E = N, P, As, Sb, and Bi) Bonds in Uranium Complexes: A Theoretical Perspective. Journal of Physical Chemistry A, 2015, 119, 922-930.	2.5	38

#	Article	IF	CITATIONS
37	Two novel uranyl complexes of a semi-rigid aromatic tetracarboxylic acid supported by an organic base as an auxiliary ligand or a templating agent: an experimental and theoretical exploration. CrystEngComm, 2015, 17, 3031-3040.	2.6	16
38	A Quasi-relativistic Density Functional Theory Study of the Actinyl (VI, V) (An = U, Np, Pu) Complexes with a Six-Membered Macrocycle Containing Pyrrole, Pyridine, and Furan Subunits. Journal of Physical Chemistry A, 2015, 119, 9178-9188.	2.5	35
39	Rapid Determination of Uranium in Water Samples by Adsorptive Cathodic Stripping Voltammetry Using a Tin-Bismuth Alloy Electrode. Electrochimica Acta, 2015, 174, 925-932.	5.2	27
40	Templateâ€Free Synthesis and Mechanistic Study of Porous Threeâ€Dimensional Hierarchical Uraniumâ€Containing and Uranium Oxide Microspheres. Chemistry - A European Journal, 2014, 20, 12655-12662.	3.3	20
41	Exploring Actinide Materials Through Synchrotron Radiation Techniques. Advanced Materials, 2014, 26, 7807-7848.	21.0	89
42	Understanding the Interactions of Neptunium and Plutonium lons with Graphene Oxide: Scalar-Relativistic DFT Investigations. Journal of Physical Chemistry A, 2014, 118, 10273-10280.	2.5	57
43	Theoretical studies on the high-spin binuclear cyclopentadienyliron derivatives Cp ₂ Fe ₂ (CN) <i>_n</i> (CpÂ=) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 740-750.	0 502 Td ((Î∙ ⁵
44	First-Principles Study of Water Reaction and H ₂ Formation on UO ₂ (111) and (110) Single Crystal Surfaces. Journal of Physical Chemistry C, 2014, 118, 21935-21944.	3.1	35
45	Design criteria for tetradentate phenanthroline-derived heterocyclic ligands to separate Am(III) from Eu(III). Science China Chemistry, 2014, 57, 1439-1448.	8.2	13
46	Theoretical Investigation on Multiple Bonds in Terminal Actinide Nitride Complexes. Inorganic Chemistry, 2014, 53, 9607-9614.	4.0	73
47	Quantum Chemistry Study of Uranium(VI), Neptunium(V), and Plutonium(IV,VI) Complexes with Preorganized Tetradentate Phenanthrolineamide Ligands. Inorganic Chemistry, 2014, 53, 10846-10853.	4.0	61
48	Theoretical Insights on the Interaction of Uranium with Amidoxime and Carboxyl Groups. Inorganic Chemistry, 2014, 53, 9466-9476.	4.0	103
49	First-Principles Study of Barium and Zirconium Stability in Uranium Mononitride Nuclear Fuels. Journal of Physical Chemistry C, 2014, 118, 14579-14585.	3.1	11
50	Two new uranyl fluoride complexes with UVlî€O–alkali (Na, Cs) interactions: Experimental and theoretical studies. CrystEngComm, 2013, 15, 8041.	2.6	8