
Ryan P A Bettens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7796174/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modelling potential energy surfaces for small clusters using Shepard interpolation with Gaussian-form nodal functions. Physical Chemistry Chemical Physics, 2019, 21, 4513-4522.	1.3	3
2	When are Many-Body Effects Significant?. Journal of Chemical Theory and Computation, 2016, 12, 5860-5867.	2.3	28
3	Comparing Vibrationally Averaged Nuclear Shielding Constants by Quantum Diffusion Monte Carlo and Second-Order Perturbation Theory. Journal of Physical Chemistry A, 2016, 120, 1297-1306.	1.1	1
4	Energy-Based Molecular Fragmentation Methods. Chemical Reviews, 2015, 115, 5607-5642.	23.0	240
5	Many-Body Basis Set Superposition Effect. Journal of Chemical Theory and Computation, 2015, 11, 5132-5143.	2.3	38
6	Modelling Water: A Lifetime Enigma. Chimia, 2015, 69, 104.	0.3	57
7	Trouble with the Many-Body Expansion. Journal of Chemical Theory and Computation, 2014, 10, 3699-3707.	2.3	48
8	The Combined Fragmentation and Systematic Molecular Fragmentation Methods. Accounts of Chemical Research, 2014, 47, 2776-2785.	7.6	69
9	Rate coefficient for the important interstellar radiative association between and H2 from classical reaction dynamics. Chemical Physics Letters, 2013, 555, 247-251.	1.2	3
10	Ab initio NMR chemical-shift calculations based on the combined fragmentation method. Physical Chemistry Chemical Physics, 2013, 15, 7541.	1.3	30
11	Aryl-substituents moderate the nature of hydrogen bonds, N–H⋯N versus N–H⋯O, leading to supramolecular chains in the crystal structures of N-arylamino 1,2,3-triazole esters. CrystEngComm, 2013, 15, 4917.	1.3	37
12	Combined Fragmentation Method: A Simple Method for Fragmentation of Large Molecules. Journal of Chemical Theory and Computation, 2012, 8, 469-478.	2.3	81
13	Monte Carlo simulation of several biologically relevant molecules and zwitterions in water. Chemical Physics Letters, 2012, 524, 90-95.	1.2	0
14	Distributed Multipoles and Energies of Flexible Molecules. Journal of Chemical Theory and Computation, 2011, 7, 921-930.	2.3	8
15	Accurately Reproducing Ab Initio Electrostatic Potentials with Multipoles and Fragmentation. Journal of Physical Chemistry A, 2009, 113, 10527-10533.	1.1	34
16	The influence of crystal packing effects upon the molecular structures of Ph3Sn(CH2)nSnPh3, n = 1 to 8, as determined by X-ray crystallography and DFT molecular orbital calculations. Supramolecular aggregation patterns sustained by C–Hâ<ï€ interactions. CrystEngComm, 2009, 11, 1362.	1.3	26
17	Co-crystallisation of 2,2′-dithiodibenzoic acid with the isomeric n-pyridinealdazines, n = 2, 3 and 4: supramolecular polymers and the influence of steric factors upon aggregation patterns. CrystEngComm, 2008, 10, 879.	1.3	48
18	First Principles NMR Calculations by Fragmentation. Journal of Physical Chemistry A, 2007, 111, 5111-5115.	1.1	43

RYAN P A BETTENS

#	Article	IF	CITATIONS
19	The Conformers of Hydroxyacetaldehyde. Journal of Physical Chemistry A, 2007, 111, 5081-5085.	1.1	6
20	On the accurate reproduction of ab initio interaction energies between an enzyme and substrate. Chemical Physics Letters, 2007, 449, 341-346.	1.2	25
21	Approximating Coupled Cluster Level Vibrational Frequencies with Composite Methods. Journal of Physical Chemistry A, 2006, 110, 2796-2800.	1.1	6
22	A New Algorithm for Molecular Fragmentation in Quantum Chemical Calculations. Journal of Physical Chemistry A, 2006, 110, 8777-8785.	1.1	111
23	Millimeter wave measurement and assignment of the rotational spectrum of aniline. Journal of Molecular Spectroscopy, 2005, 229, 54-56.	0.4	7
24	Millimeter and submillimeter wave rotational spectrum of pyridine in the ground and excited vibrational states. Journal of Molecular Spectroscopy, 2005, 232, 61-65.	0.4	21
25	Modeling the Maillard Reaction: Schiff Base Formation. Annals of the New York Academy of Sciences, 2005, 1043, 890-890.	1.8	0
26	Prevalence of the thioamide {â< H–N–Cî€6}2 synthon—solid-state (X-ray crystallography), solution (NMR) and gas-phase (theoretical) structures of O-methyl-N-aryl-thiocarbamides. CrystEngComm, 2005, 7, 682.	1.3	56
27	Millimeter wave measurement and assignment of the rotational spectrum of 2-aminopyridine. Journal of Molecular Spectroscopy, 2004, 223, 73-79.	0.4	5
28	Comparison of Fundamental and Harmonic Frequencies of First-Row Closed-Shell Diatomics Calculated Using Full ab Initio Methods and Composite Methods. Journal of Physical Chemistry A, 2004, 108, 1826-1829.	1.1	2
29	Bound State Potential Energy Surface Construction:Â Ab Initio Zero-Point Energies and Vibrationally Averaged Rotational Constants. Journal of the American Chemical Society, 2003, 125, 584-587.	6.6	14
30	The Millimeter―and Submillimeterâ€Wave Spectrum of the transâ€ŧrans Conformer of Diethyl Ether (C 2 H) Tj E	T <u>Qq</u> 0 0 0	rgBT /Overlo
31	Multiple surface long-range interaction potentials between C ([sup 3]P[sub j]) and closed-shell molecules. Journal of Chemical Physics, 2002, 116, 101.	1.2	4
32	Capture rates for collisions of C (3Pj) and Ge (1S0) with unsaturated hydrocarbons. Journal of Chemical Physics, 2001, 114, 10342-10354.	1.2	3
33	Interpolated potential-energy surface and reaction dynamics for BH++H2. Journal of Chemical Physics, 2001, 114, 10711-10716.	1.2	14
34	Ab initio potential energy surface for the reactions between H2O and H. Journal of Chemical Physics, 2000, 112, 10162-10172.	1.2	62
35	The Microwave Spectrum, Structure, and Ring-Puckering of the Cyclic Dipeptide Diketopiperazine. Journal of the American Chemical Society, 2000, 122, 5856-5860.	6.6	42
36	Learning to interpolate molecular potential energy surfaces with confidence: A Bayesian approach. Journal of Chemical Physics, 1999, 111, 816-826.	1.2	212

RYAN P A BETTENS

#	Article	IF	CITATIONS
37	Interpolated potential energy surface and reaction dynamics for O(3P)+H3+(1A1′) and OH+(3Σâ^')+H2(1Σg+ Journal of Chemical Physics, 1999, 111, 6322-6332.). _{1.2}	43
38	Potential energy surface for the reactions BeH2+HBeH+H2. Physical Chemistry Chemical Physics, 1999, 1, 939-945.	1.3	17
39	Potential energy surfaces and dynamics for the reactions between C(3P) and H3+(1A1′). Journal of Chemical Physics, 1998, 108, 2424-2433.	1.2	42
40	Interpolated potential energy surface and dynamics for the reactions between N(4S) and H3+(1A1′). Journal of Chemical Physics, 1998, 109, 9728-9736.	1.2	41
41	A fast scan submillimeter spectroscopic technique. Review of Scientific Instruments, 1997, 68, 1675-1683.	0.6	146
42	A Microwave Study and Centrifugal Distortion Analysis of the Pyrrole-CO Complex. The Journal of Physical Chemistry, 1994, 98, 4551-4563.	2.9	27
43	The ion chemistry of Formula in dense interstellar clouds: an experimental study. Monthly Notices of the Royal Astronomical Society, 1993, 264, 862-864.	1.6	11
44	Ion-molecule chemistry of HnC3O+, C3O2+, and C3O+. The Journal of Physical Chemistry, 1993, 97, 13673-13676.	2.9	18
45	The dipole moment of C3H2. Monthly Notices of the Royal Astronomical Society, 1987, 227, 19P-20P.	1.6	20