Hermela Shimelis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7796031/publications.pdf

Version: 2024-02-01

623734 794594 2,316 21 14 19 citations g-index h-index papers 21 21 21 5107 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	CDK5RAP3, a New BRCA2 Partner That Regulates DNA Repair, Is Associated with Breast Cancer Survival. Cancers, 2022, 14, 353.	3.7	O
2	Regulation of p27 (Kip1) by Ubiquitin E3 Ligase RNF6. Pharmaceutics, 2022, 14, 802.	4.5	2
3	Racial and Ethnic Differences in Multigene Hereditary Cancer Panel Test Results for Women With Breast Cancer. Journal of the National Cancer Institute, 2021, 113, 1429-1433.	6.3	18
4	The Contribution of Germline Predisposition Gene Mutations to Clinical Subtypes of Invasive Breast Cancer From a Clinical Genetic Testing Cohort. Journal of the National Cancer Institute, 2020, 112, 1231-1241.	6.3	61
5	Comprehensive annotation of BRCA1 and BRCA2 missense variants by functionally validated sequence-based computational prediction models. Genetics in Medicine, 2019, 21, 71-80.	2.4	52
6	Risk of Different Cancers Among First-degree Relatives of Pancreatic Cancer Patients: Influence of Probands' Susceptibility Gene Mutation Status. Journal of the National Cancer Institute, 2019, 111, 264-271.	6.3	10
7	Racial and ethnic differences in the results of multigene panel testing of inherited cancer predisposition genes in breast cancer patients Journal of Clinical Oncology, 2019, 37, 1514-1514.	1.6	4
8	Assessment of the Clinical Relevance of BRCA2 Missense Variants by Functional and Computational Approaches. American Journal of Human Genetics, 2018, 102, 233-248.	6.2	64
9	Association Between Inherited Germline Mutations in Cancer Predisposition Genes and Risk of Pancreatic Cancer. JAMA - Journal of the American Medical Association, 2018, 319, 2401.	7.4	375
10	Expanding BRCA1/2 testing criteria to include other confirmed breast and ovarian cancer susceptibility genes Journal of Clinical Oncology, 2018, 36, 1524-1524.	1.6	0
11	Male breast cancer in a multi-gene panel testing cohort: insights and unexpected results. Breast Cancer Research and Treatment, 2017, 161, 575-586.	2.5	116
12	<i>BRCA2</i> Hypomorphic Missense Variants Confer Moderate Risks of Breast Cancer. Cancer Research, 2017, 77, 2789-2799.	0.9	75
13	Associations Between Cancer Predisposition Testing Panel Genes and Breast Cancer. JAMA Oncology, 2017, 3, 1190.	7.1	472
14	Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer. Nature Genetics, 2017, 49, 1767-1778.	21.4	289
15	Frequency of mutations in a large series of clinically ascertained ovarian cancer cases tested on multi-gene panels compared to reference controls. Gynecologic Oncology, 2017, 147, 375-380.	1.4	105
16	Exome sequencing identifies FANCM as a susceptibility gene for triple-negative breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15172-15177.	7.1	162
17	Abstract 4089: Differential regulation of androgen receptor by PIM-1 kinases via phosphorylation-dependent recruitment of distinct ubiquitin E3 ligases Cancer Research, 2013, 73, 4089-4089.	0.9	4
18	Differential Regulation of Androgen Receptor by PIM-1 Kinases via Phosphorylation-dependent Recruitment of Distinct Ubiquitin E3 Ligases. Journal of Biological Chemistry, 2012, 287, 22959-22968.	3.4	48

#	Article	IF	CITATIONS
19	Novel Membrane-associated Androgen Receptor Splice Variant Potentiates Proliferative and Survival Responses in Prostate Cancer Cells. Journal of Biological Chemistry, 2011, 286, 36152-36160.	3.4	95
20	Regulation of Androgen Receptor Transcriptional Activity and Specificity by RNF6-Induced Ubiquitination. Cancer Cell, 2009, 15, 270-282.	16.8	197
21	The 44-kDa Pim-1 Kinase Phosphorylates BCRP/ABCG2 and Thereby Promotes Its Multimerization and Drug-resistant Activity in Human Prostate Cancer Cells. Journal of Biological Chemistry, 2008, 283, 3349-3356.	3.4	167