Frédérique Truffault

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7796020/publications.pdf

Version: 2024-02-01

25 papers 969

394421 19 h-index 25 g-index

25 all docs

25 docs citations

times ranked

25

1120 citing authors

#	Article	IF	CITATIONS
1	The chemokine CXCL13 is a key molecule in autoimmune myasthenia gravis. Blood, 2006, 108, 432-440.	1.4	143
2	Both Treg cells and Tconv cells are defective in the Myasthenia gravis thymus: Roles of IL-17 and TNF- $\hat{l}\pm$. Journal of Autoimmunity, 2014, 52, 53-63.	6.5	118
3	Thymus involvement in earlyâ€onset myasthenia gravis. Annals of the New York Academy of Sciences, 2018, 1412, 137-145.	3.8	71
4	Thymic Germinal Centers and Corticosteroids in Myasthenia Gravis: an Immunopathological Study in 1035 Cases and a Critical Review. Clinical Reviews in Allergy and Immunology, 2017, 52, 108-124.	6. 5	70
5	Circulating mi <scp>RNA</scp> s in myasthenia gravis: miRâ€150â€5p as a new potential biomarker. Annals of Clinical and Translational Neurology, 2014, 1, 49-58.	3.7	62
6	Integrative analysis of methylome and transcriptome in human blood identifies extensive sex- and immune cell-specific differentially methylated regions. Epigenetics, 2015, 10, 943-957.	2.7	57
7	<i>Regulatory and Pathogenic Mechanisms in Human Autoimmune Myasthenia Gravis</i> New York Academy of Sciences, 2008, 1132, 135-142.	3.8	49
8	Thymoma-associated myasthenia gravis: On the search for a pathogen signature. Journal of Autoimmunity, 2014, 52, 29-35.	6.5	37
9	The thymic theme of acetylcholinesterase splice variants in myasthenia gravis. Blood, 2007, 109, 4383-4391.	1.4	35
10	Il-23/Th17 cell pathway: A promising target to alleviate thymic inflammation maintenance in myasthenia gravis. Journal of Autoimmunity, 2019, 98, 59-73.	6.5	35
11	Risk factors associated with myasthenia gravis in thymoma patients: The potential role of thymic germinal centers. Journal of Autoimmunity, 2020, 106, 102337.	6.5	34
12	Defects of immunoregulatory mechanisms in myasthenia gravis: role of ILâ€17. Annals of the New York Academy of Sciences, 2012, 1274, 40-47.	3.8	27
13	<scp>VAV</scp> 1 and <scp>BAFF</scp> , via <scp>NF</scp> ήB pathway, are genetic risk factors for myasthenia gravis. Annals of Clinical and Translational Neurology, 2014, 1, 329-339.	3.7	27
14	Thymus and Myasthenia Gravis: What can we learn from DNA microarrays?. Journal of Neuroimmunology, 2008, 201-202, 57-63.	2.3	25
15	Analysis of microRNA expression in the thymus of Myasthenia Gravis patients opens new research avenues. Autoimmunity Reviews, 2018, 17, 588-600.	5.8	25
16	Causes and Consequences of miR-150-5p Dysregulation in Myasthenia Gravis. Frontiers in Immunology, 2019, 10, 539.	4.8	24
17	Methylome and transcriptome profiling in Myasthenia Gravis monozygotic twins. Journal of Autoimmunity, 2017, 82, 62-73.	6.5	23
18	Preconditioned mesenchymal stem cells treat myasthenia gravis in a humanized preclinical model. JCI Insight, 2017, 2, e89665.	5.0	21

#	Article	IF	CITATIONS
19	Pathophysiological mechanisms of autoimmunity. Annals of the New York Academy of Sciences, 2018, 1413, 59-68.	3.8	20
20	Cultured Human Thymic-Derived Cells Display Medullary Thymic Epithelial Cell Phenotype and Functionality. Frontiers in Immunology, 2018, 9, 1663.	4.8	20
21	Regulatory B cells in myasthenia gravis are differentially affected by therapies. Annals of Clinical and Translational Neurology, 2018, 5, 1408-1414.	3.7	18
22	Decreased expression of miR-29 family associated with autoimmune myasthenia gravis. Journal of Neuroinflammation, 2020, 17, 294.	7.2	14
23	Home-based exercise in autoimmune myasthenia gravis: A randomized controlled trial. Neuromuscular Disorders, 2021, 31, 726-735.	0.6	7
24	Comparative Analysis of Thymic and Blood Treg in Myasthenia Gravis: Thymic Epithelial Cells Contribute to Thymic Immunoregulatory Defects. Frontiers in Immunology, 2020, 11, 782.	4.8	6
25	Altered expression of fragile X mental retardation-1 (FMR1) in the thymus in autoimmune myasthenia gravis. Journal of Neuroinflammation, 2021, 18, 270.	7.2	1