
M Jorge Cardoso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7795733/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Knowledge barriers in a national symptomatic-COVID-19 testing programme. PLOS Global Public Health, 2022, 2, e0000028.	1.6	11
2	Informative and Reliable Tract Segmentation for Preoperative Planning. Frontiers in Radiology, 2022, 2, .	2.0	2
3	The Medical Segmentation Decathlon. Nature Communications, 2022, 13, .	12.8	252
4	Clinical evaluation of automated quantitative MRI reports for assessment of hippocampal sclerosis. European Radiology, 2021, 31, 34-44.	4.5	11
5	Cancer and Risk of COVID-19 Through a General Community Survey. Oncologist, 2021, 26, e182-e185.	3.7	61
6	Robust parametric modeling of Alzheimer's disease progression. NeuroImage, 2021, 225, 117460.	4.2	11
7	Learning joint segmentation of tissues and brain lesions from task-specific hetero-modal domain-shifted datasets. Medical Image Analysis, 2021, 67, 101862.	11.6	16
8	Brain amyloid and vascular risk are related to distinct white matter hyperintensity patterns. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 1162-1174.	4.3	37
9	Distinguishing Healthy Ageing fromÂDementia: A Biomechanical Simulation ofÂBrain Atrophy Using Deep Networks. Lecture Notes in Computer Science, 2021, , 13-22.	1.3	0
10	Automated quantitative MRI volumetry reports support diagnostic interpretation in dementia: a multi-rater, clinical accuracy study. European Radiology, 2021, 31, 5312-5323.	4.5	19
11	A Position Statement on the Utility of Interval Imaging in Standard of Care Brain Tumour Management: Defining the Evidence Gap and Opportunities for Future Research. Frontiers in Oncology, 2021, 11, 620070.	2.8	13
12	A Multi-Channel Uncertainty-Aware Multi-Resolution Network for MR to CT Synthesis. Applied Sciences (Switzerland), 2021, 11, 1667.	2.5	7
13	Symptom clusters in COVID-19: A potential clinical prediction tool from the COVID Symptom Study app. Science Advances, 2021, 7, .	10.3	115
14	A populationâ€based study of head injury, cognitive function and pathological markers. Annals of Clinical and Translational Neurology, 2021, 8, 842-856.	3.7	5
15	Attributes and predictors of long COVID. Nature Medicine, 2021, 27, 626-631.	30.7	1,613
16	Anomaly detection for the individual analysis of brain PET images. Journal of Medical Imaging, 2021, 8, 024003.	1.5	6
17	Longitudinal structural and perfusion MRI enhanced by machine learning outperforms standalone modalities and radiological expertise in high-grade glioma surveillance. Neuroradiology, 2021, 63, 2047-2056.	2.2	9
18	Uncertainty analysis of MR-PET image registration for precision neuro-PET imaging. NeuroImage, 2021, 232, 117821.	4.2	8

#	Article	IF	CITATIONS
19	Detecting COVID-19 infection hotspots in England using large-scale self-reported data from a mobile application: a prospective, observational study. Lancet Public Health, The, 2021, 6, e21-e29.	10.0	72
20	Methods and open-source toolkit for analyzing and visualizing challenge results. Scientific Reports, 2021, 11, 2369.	3.3	25
21	Geo-social gradients in predicted COVID-19 prevalence in Great Britain: results from 1 960 242 users of the COVID-19 Symptoms Study app. Thorax, 2021, 76, 723-725.	5.6	12
22	Opportunities for Understanding MS Mechanisms and Progression With MRI Using Large-Scale Data Sharing and Artificial Intelligence. Neurology, 2021, 97, 989-999.	1.1	10
23	Presumed small vessel disease, imaging and cognition markers in the Alzheimer's Disease Neuroimaging Initiative. Brain Communications, 2021, 3, fcab226.	3.3	2
24	Reclassifying stroke lesion anatomy. Cortex, 2021, 145, 1-12.	2.4	16
25	Patterns of white matter hyperintensities associated with cognition in middle-aged cognitively healthy individuals. Brain Imaging and Behavior, 2020, 14, 2012-2023.	2.1	40
26	Automated postoperative muscle assessment of hip arthroplasty patients using multimodal imaging joint segmentation. Computer Methods and Programs in Biomedicine, 2020, 183, 105062.	4.7	4
27	A 30‥ear Clinical and Magnetic Resonance Imaging Observational Study of Multiple Sclerosis and Clinically Isolated Syndromes. Annals of Neurology, 2020, 87, 63-74.	5.3	67
28	Imaging biomarkers in Alzheimer's disease. , 2020, , 343-378.		1
29	Neurosense: deep sensing of full or near-full coverage head/brain scans in human magnetic resonance imaging. Neuroinformatics, 2020, 18, 333-336.	2.8	0
30	Comorbid amyloidâ€Î² pathology affects clinical and imaging features in VCD. Alzheimer's and Dementia, 2020, 16, 354-364.	0.8	6
31	Hippocampal profiling: Localized magnetic resonance imaging volumetry and T2 relaxometry for hippocampal sclerosis. Epilepsia, 2020, 61, 297-309.	5.1	26
32	Investigating the clinico-anatomical dissociation in the behavioral variant of Alzheimer disease. Alzheimer's Research and Therapy, 2020, 12, 148.	6.2	17
33	Risk of COVID-19 among front-line health-care workers and the general community: a prospective cohort study. Lancet Public Health, The, 2020, 5, e475-e483.	10.0	1,595
34	The future of digital health with federated learning. Npj Digital Medicine, 2020, 3, 119.	10.9	887
35	Substantially thinner internal granular layer and reduced molecular layer surface in the cerebellar cortex of the Tc1 mouse model of down syndrome – a comprehensive morphometric analysis with active staining contrast-enhanced MRI. NeuroImage, 2020, 223, 117271.	4.2	7
36	Rapid implementation of mobile technology for real-time epidemiology of COVID-19. Science, 2020, 368, 1362-1367.	12.6	313

#	Article	IF	CITATIONS
37	Real-time tracking of self-reported symptoms to predict potential COVID-19. Nature Medicine, 2020, 26, 1037-1040.	30.7	1,173
38	A k-Space Model of Movement Artefacts: Application to Segmentation Augmentation and Artefact Removal. IEEE Transactions on Medical Imaging, 2020, 39, 2881-2892.	8.9	20
39	Machine learning assisted DSC-MRI radiomics as a tool for glioma classification by grade and mutation status. BMC Medical Informatics and Decision Making, 2020, 20, 149.	3.0	38
40	Basal forebrain atrophy in frontotemporal dementia. NeuroImage: Clinical, 2020, 26, 102210.	2.7	13
41	Automated White Matter Hyperintensity Segmentation Using Bayesian Model Selection: Assessment and Correlations with Cognitive Change. Neuroinformatics, 2020, 18, 429-449.	2.8	14
42	Hierarchical Brain Parcellation with Uncertainty. Lecture Notes in Computer Science, 2020, , 23-31.	1.3	4
43	Deep iterative vessel segmentation in OCT angiography. Biomedical Optics Express, 2020, 11, 2490.	2.9	20
44	Uncertainty-Aware Multi-resolution Whole-Body MR to CT Synthesis. Lecture Notes in Computer Science, 2020, , 110-119.	1.3	1
45	Brain Perfusion, Regional Volumes, and Cognitive Function in Human Immunodeficiency Virus–positive Patients Treated With Protease Inhibitor Monotherapy. Clinical Infectious Diseases, 2019, 68, 1031-1040.	5.8	3
46	The quantitative neuroradiology initiative framework: application to dementia. British Journal of Radiology, 2019, 92, 20190365.	2.2	32
47	Prion disease diagnosis using subject-specific imaging biomarkers within a multi-kernel Gaussian process. NeuroImage: Clinical, 2019, 24, 102051.	2.7	7
48	Learning to see the invisible: A dataâ€driven approach to finding the underlying patterns of abnormality in visually normal brain magnetic resonance images in patients with temporal lobe epilepsy. Epilepsia, 2019, 60, 2499-2507.	5.1	14
49	Spatial patterns of white matter hyperintensities associated with Alzheimer's disease risk factors in a cognitively healthy middle-aged cohort. Alzheimer's Research and Therapy, 2019, 11, 12.	6.2	46
50	Magnetic Resonance Imaging of Cerebral Small Vessel Disease in Men Living with HIV and HIV-Negative Men Aged 50 and Above. AIDS Research and Human Retroviruses, 2019, 35, 453-460.	1.1	13
51	Longitudinal neuroanatomical and cognitive progression of posterior cortical atrophy. Brain, 2019, 142, 2082-2095.	7.6	64
52	High-dimensional detection of imaging response to treatment in multiple sclerosis. Npj Digital Medicine, 2019, 2, 49.	10.9	12
53	Applying causal models to explore the mechanism of action of simvastatin in progressive multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11020-11027.	7.1	28
54	Standardized Assessment of Automatic Segmentation of White Matter Hyperintensities and Results of the WMH Segmentation Challenge. IEEE Transactions on Medical Imaging, 2019, 38, 2556-2568.	8.9	165

#	Article	IF	CITATIONS
55	Cortical cerebral blood flow in ageing: effects of haematocrit, sex, ethnicity and diabetes. European Radiology, 2019, 29, 5549-5558.	4.5	22
56	Study the Longitudinal in vivo and Cross-Sectional ex vivo Brain Volume Difference for Disease Progression and Treatment Effect on Mouse Model of Tauopathy Using Automated MRI Structural Parcellation. Frontiers in Neuroscience, 2019, 13, 11.	2.8	22
57	White matter hyperintensities in progranulin-associated frontotemporal dementia: A longitudinal GENFI study. NeuroImage: Clinical, 2019, 24, 102077.	2.7	27
58	GAS: A genetic atlas selection strategy in multi-atlas segmentation framework. Medical Image Analysis, 2019, 52, 97-108.	11.6	18
59	Training recurrent neural networks robust to incomplete data: Application to Alzheimer's disease progression modeling. Medical Image Analysis, 2019, 53, 39-46.	11.6	79
60	Privacy-Preserving Federated Brain Tumour Segmentation. Lecture Notes in Computer Science, 2019, , 133-141.	1.3	219
61	Physics-Informed Brain MRI Segmentation. Lecture Notes in Computer Science, 2019, , 100-109.	1.3	9
62	Improved MR to CT Synthesis for PET/MR Attenuation Correction Using Imitation Learning. Lecture Notes in Computer Science, 2019, , 13-21.	1.3	9
63	Multi-domain Adaptation in Brain MRI Through Paired Consistency and Adversarial Learning. Lecture Notes in Computer Science, 2019, 2019, 54-62.	1.3	22
64	On the Initialization of Long Short-Term Memory Networks. Lecture Notes in Computer Science, 2019, , 275-286.	1.3	5
65	As Easy as 1, 24? Uncertainty in Counting Tasks for Medical Imaging. Lecture Notes in Computer Science, 2019, 2019, 356-364.	1.3	5
66	Thalamic atrophy in frontotemporal dementia — Not just a C9orf72 problem. NeuroImage: Clinical, 2018, 18, 675-681.	2.7	53
67	White matter hyperintensities and vascular risk factors in monozygotic twins. Neurobiology of Aging, 2018, 66, 40-48.	3.1	20
68	NiftyNet: a deep-learning platform for medical imaging. Computer Methods and Programs in Biomedicine, 2018, 158, 113-122.	4.7	407
69	Structural and effective connectivity in focal epilepsy. NeuroImage: Clinical, 2018, 17, 943-952.	2.7	41
70	Deep gray matter volume loss drives disability worsening in multiple sclerosis. Annals of Neurology, 2018, 83, 210-222.	5.3	295
71	Presymptomatic atrophy in autosomal dominant Alzheimer's disease: AÂserial magnetic resonance imaging study. Alzheimer's and Dementia, 2018, 14, 43-53.	0.8	42
72	Volumetric reconstruction from printed films: Enabling 30 year longitudinal analysis in MR neuroimaging. NeuroImage, 2018, 165, 238-250.	4.2	11

#	Article	IF	CITATIONS
73	Patterns of progressive atrophy vary with age in Alzheimer's disease patients. Neurobiology of Aging, 2018, 63, 22-32.	3.1	31
74	O3â€13â€01: PATTERNS OF GLUCOSE HYPOMETABOLISM, SUBCORTICAL ATROPHY AND WHITE MATTER HYPERINTENSITIES IN THE BEHAVIORAL VARIANT OF ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2018, 14, P1054.	0.8	0
75	P2â€438: ROBUST IDENTIFICATION OF BRAIN STRUCTURES MOST DISCRIMINATIVE IN DETECTING EARLY CHANGES IN AUTOSOMAL DOMINANT ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2018, 14, P882.	0.8	0
76	P2â€505: REGIONAL DISTRIBUTION OF WHITE MATTER HYPERINTENSITY CORRELATES WITH COGNITION IN THE ALFA COHORT. Alzheimer's and Dementia, 2018, 14, P925.	0.8	4
77	ICâ€Pâ€048: SAMPLE SIZE ESTIMATES FOR SECONDARY PREVENTION STUDIES USING REGIONAL ATROPHY RATES Alzheimer's and Dementia, 2018, 14, P47.	S _{0.8}	0
78	ICâ€Pâ€165: ROBUST IDENTIFICATION OF BRAIN STRUCTURES MOST DISCRIMINATIVE IN DETECTING EARLY CHANGES IN AUTOSOMAL DOMINANT ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2018, 14, P138.	0.8	0
79	O2â€05â€01: INFLUENCES OF BLOOD PRESSURE AND BLOOD PRESSURE TRAJECTORIES ON CEREBRAL PATHOLC AT AGE 70: RESULTS FROM A BRITISH BIRTH COHORT. Alzheimer's and Dementia, 2018, 14, P626.	DGY 0.8	1
80	ICâ€Pâ€110: PATTERNS OF GLUCOSE HYPOMETABOLISM, SUBCORTICAL ATROPHY AND WHITE MATTER HYPERINTENSITIES IN THE BEHAVIORAL VARIANT OF ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2018, 14, P94.	0.8	0
81	P1â€410: SAMPLE SIZE ESTIMATES FOR SECONDARY PREVENTION STUDIES USING REGIONAL ATROPHY RATES. Alzheimer's and Dementia, 2018, 14, P461.	0.8	0
82	O2â€13â€03: REGIONAL DISTRIBUTION OF WHITE MATTER HYPERINTENSITIES RELATED TO ALZHEIMER'S DISEAS RISK FACTORS IN THE ALFA COHORT. Alzheimer's and Dementia, 2018, 14, P653.	E 0.8	0
83	Towards Safe Deep Learning: Accurately Quantifying Biomarker Uncertainty in Neural Network Predictions. Lecture Notes in Computer Science, 2018, , 691-699.	1.3	32
84	Thalamic Nuclei Segmentation Using Tractography, Population-Specific Priors and Local Fibre Orientation. Lecture Notes in Computer Science, 2018, , 383-391.	1.3	4
85	Cardiovascular Risk Factors and White Matter Hyperintensities: Difference in Susceptibility in South Asians Compared With Europeans. Journal of the American Heart Association, 2018, 7, e010533.	3.7	26
86	Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases with Subtype and Stage Inference. Nature Communications, 2018, 9, 4273.	12.8	263
87	Clinical phenotype, atrophy, and small vessel disease in <i>APOE</i> ε2 carriers with Alzheimer disease. Neurology, 2018, 91, e1851-e1859.	1.1	46
88	Progression of regional grey matter atrophy in multiple sclerosis. Brain, 2018, 141, 1665-1677.	7.6	269
89	Hippocampal Subfield Volumetry: Differential Pattern of Atrophy in Different Forms of Genetic Frontotemporal Dementia. Journal of Alzheimer's Disease, 2018, 64, 497-504.	2.6	26
90	Pathological correlates of white matter hyperintensities in a case of progranulin mutation associated frontotemporal dementia. Neurocase, 2018, 24, 166-174.	0.6	40

#	Article	IF	CITATIONS
91	Geometric and dosimetric evaluations of atlas-based segmentation methods of MR images in the head and neck region. Physics in Medicine and Biology, 2018, 63, 145007.	3.0	28
92	Deep Boosted Regression for MR to CT Synthesis. Lecture Notes in Computer Science, 2018, , 61-70.	1.3	7
93	PIMMS: Permutation Invariant Multi-modal Segmentation. Lecture Notes in Computer Science, 2018, , 201-209.	1.3	12
94	Uncertainty in Multitask Learning: Joint Representations for Probabilistic MR-only Radiotherapy Planning. Lecture Notes in Computer Science, 2018, , 3-11.	1.3	25
95	Imaging biomarkers for the diagnosis of Prion disease. , 2018, , .		0
96	APOE ε4 status is associated with white matter hyperintensities volume accumulation rate independent of AD diagnosis. Neurobiology of Aging, 2017, 53, 67-75.	3.1	44
97	Longitudinal segmentation of age-related white matter hyperintensities. Medical Image Analysis, 2017, 38, 50-64.	11.6	30
98	Cognitive reserve and TMEM106B genotype modulate brain damage in presymptomatic frontotemporal dementia: a GENFI study. Brain, 2017, 140, 1784-1791.	7.6	55
99	The TMEM106B risk allele is associated with lower cortical volumes in a clinically diagnosed frontotemporal dementia cohort. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 997-998.	1.9	9
100	Real-time imaging of single neuronal cell apoptosis in patients with glaucoma. Brain, 2017, 140, 1757-1767.	7.6	100
101	Effect of high-dose simvastatin on cognitive, neuropsychiatric, and health-related quality-of-life measures in secondary progressive multiple sclerosis: secondary analyses from the MS-STAT randomised, placebo-controlled trial. Lancet Neurology, The, 2017, 16, 591-600.	10.2	95
102	White matter hyperintensities are seen only in GRN mutation carriers in the GENFI cohort. NeuroImage: Clinical, 2017, 15, 171-180.	2.7	63
103	A Comparison of Accelerated and Non-accelerated MRI Scans for Brain Volume and Boundary Shift Integral Measures of Volume Change: Evidence from the ADNI Dataset. Neuroinformatics, 2017, 15, 215-226.	2.8	14
104	Iterative framework for the joint segmentation and CT synthesis of MR images: application to MRI-only radiotherapy treatment planning. Physics in Medicine and Biology, 2017, 62, 4237-4253.	3.0	32
105	A multi-centre evaluation of eleven clinically feasible brain PET/MRI attenuation correction techniques using a large cohort of patients. NeuroImage, 2017, 147, 346-359.	4.2	200
106	White matter hyperintensities are associated with disproportionate progressive hippocampal atrophy. Hippocampus, 2017, 27, 249-262.	1.9	62
107	Automated T2 relaxometry of the hippocampus for temporal lobe epilepsy. Epilepsia, 2017, 58, 1645-1652.	5.1	43
108	[ICâ€₽â€004]: A COMPARISON OF TECHNIQUES FOR QUANTIFYING AMYLOID BURDEN ON A COMBINED PET/MR SCANNER. Alzheimer's and Dementia, 2017, 13, P12.	0.8	0

#	Article	IF	CITATIONS
109	Study protocol: Insight 46 – a neuroscience sub-study of the MRC National Survey of Health and Development. BMC Neurology, 2017, 17, 75.	1.8	64
110	[P2–418]: METHODOLOGICAL AND LOGISTIC STRATEGIES FOR A LARGE MULTI ENTER βâ€AMYLOID PET EUROPEAN PROJECT: AMYLOID IMAGING TO PREVENT ALZHEIMER'S DISEASE (AMYPAD). Alzheimer's and Dementia, 2017, 13, P794.	0.8	0
111	[P2–545]: VASCULAR AND EARLY LIFE INFLUENCES ON CEREBROVASCULAR DISEASE IN INSIGHT 46: A SUB‧TUDY OF THE MRC NATIONAL SURVEY OF HEALTH AND DEVELOPMENT (NSHD) BRITISH BIRTH COHORT. Alzheimer's and Dementia, 2017, 13, P851.	0.8	0
112	[P3–348]: EXPLORING THE POPULATION PREVALENCE OF βâ€AMYLOID BURDEN: AN ANALYSIS OF 250 INDIVIDUALS BORN IN MAINLAND BRITAIN IN THE SAME WEEK IN 1946. Alzheimer's and Dementia, 2017, 13, P1088.	0.8	0
113	[P3–373]: A COMPARISON OF TECHNIQUES FOR QUANTIFYING AMYLOID BURDEN ON A COMBINED PET/MR SCANNER. Alzheimer's and Dementia, 2017, 13, P1100.	0.8	0
114	[P3–401]: EARLY DIAGNOSIS OF ALZHEIMER'S DISEASE USING SUBJECTâ€SPECIFIC MODELS OF FDGâ€PET DAT Alzheimer's and Dementia, 2017, 13, P1117.	A. 0.8	0
115	[ICâ€Pâ€065]: WHITE MATTER HYPERINTENSITIES AND VASCULAR RISK FACTORS IN COGNITIVELY HEALTHY ELDERLY MONOZYGOTIC TWIN PAIRS. Alzheimer's and Dementia, 2017, 13, P53.	0.8	0
116	[ICâ€03–04]: WHITE MATTER HYPERINTENSITIES IN GENETIC FRONTOTEMPORAL DEMENTIA: A GENFI STUDY. Alzheimer's and Dementia, 2017, 13, P9.	0.8	0
117	[P1–411]: WHITE MATTER HYPERINTENSITIES AND VASCULAR RISK FACTORS IN COGNITIVELY HEALTHY ELDERI MONOZYGOTIC TWIN PAIRS. Alzheimer's and Dementia, 2017, 13, P433.	-6.8	0
118	[P1–465]: PROGRESSIVE CALLOSAL ATROPHY WITH STABLE MEMORY IMPAIRMENT IN FAMILIAL BRITISH DEMENTIA. Alzheimer's and Dementia, 2017, 13, P465.	0.8	0
119	[O3–10–04]: SIMULTANEOUS CHANGES IN BLOOD PRESSURE, COGNITION AND BRAIN VOLUME IN AGEING, MILD COGNITIVE IMPAIRMENT AND ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2017, 13, P924.	0.8	0
120	[O5–05–04]: BRAIN VOLUME, CEREBRAL βâ€AMYLOID DEPOSITION, AND AGEING: A STUDY OF OVER 200 INDIVIDUALS BORN IN THE SAME WEEK IN 1946. Alzheimer's and Dementia, 2017, 13, P1464.	0.8	0
121	[P4–524]: WHITE MATTER HYPERINTENSITIES ARE ASSOCIATED WITH HIPPOCAMPAL ATROPHY RATES AFTER ADJUSTING FOR OTHER VASCULAR MARKERS IN PREDEMENTIA DISEASE STAGES. Alzheimer's and Dementia, 2017, 13, P1547.	0.8	0
122	[ICâ€₽â€087]: SIMULTANEOUS CHANGES IN BLOOD PRESSURE, COGNITION AND BRAIN VOLUME IN AGEING, MI COGNITIVE IMPAIRMENT AND ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2017, 13, P70.	LD.8	0
123	Comparison of In Vivo and Ex Vivo MRI for the Detection of Structural Abnormalities in a Mouse Model of Tauopathy. Frontiers in Neuroinformatics, 2017, 11, 20.	2.5	37
124	On the Compactness, Efficiency, and Representation of 3D Convolutional Networks: Brain Parcellation as a Pretext Task. Lecture Notes in Computer Science, 2017, , 348-360.	1.3	202
125	Longitudinal development in the preterm thalamus and posterior white matter: MRI correlations between diffusion weighted imaging and T2 relaxometry. Human Brain Mapping, 2016, 37, 2479-2492.	3.6	27
126	Relationship of grey and white matter abnormalities with distance from the surface of the brain in multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 1212-1217.	1.9	53

M Jorge Cardoso

#	Article	IF	CITATIONS
127	Acceleration of hippocampal atrophy rates in asymptomatic amyloidosis. Neurobiology of Aging, 2016, 39, 99-107.	3.1	34
128	Neurofilament light chain: a biomarker for genetic frontotemporal dementia. Annals of Clinical and Translational Neurology, 2016, 3, 623-636.	3.7	207
129	Serum neurofilament light chain protein is a measure of disease intensity in frontotemporal dementia. Neurology, 2016, 87, 1329-1336.	1.1	354
130	aMAP is a validated pipeline for registration and segmentation of high-resolution mouse brain data. Nature Communications, 2016, 7, 11879.	12.8	85
131	Joint Segmentation and CT Synthesis forÂMRI-only Radiotherapy Treatment Planning. Lecture Notes in Computer Science, 2016, , 547-555.	1.3	3
132	Fully automated grey and white matter spinal cord segmentation. Scientific Reports, 2016, 6, 36151.	3.3	34
133	Longitudinal in vivo MRI in a Huntington's disease mouse model: Global atrophy in the absence of white matter microstructural damage. Scientific Reports, 2016, 6, 32423.	3.3	26
134	Multimodal Image Analysis in Alzheimer's Disease via Statistical Modelling of Non-local Intensity Correlations. Scientific Reports, 2016, 6, 22161.	3.3	18
135	A novel use of arterial spin labelling MRI to demonstrate focal hypoperfusion in individuals with posterior cortical atrophy: a multimodal imaging study. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 1032-1034.	1.9	9
136	The habenula: an under-recognised area of importance in frontotemporal dementia?. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 910-912.	1.9	14
137	Patterns of regional cerebellar atrophy in genetic frontotemporal dementia. NeuroImage: Clinical, 2016, 11, 287-290.	2.7	54
138	Multi-Atlas–Based Attenuation Correction for Brain 18F-FDG PET Imaging Using a Time-of-Flight PET/MR Scanner: Comparison with Clinical Single-Atlas– and CT-Based Attenuation Correction. Journal of Nuclear Medicine, 2016, 57, 1258-1264.	5.0	29
139	Beyond the Resolution Limit: Diffusion Parameter Estimation in Partial Volume. Lecture Notes in Computer Science, 2016, , 605-612.	1.3	2
140	Fully-Automated μMRI Morphometric Phenotyping of the Tc1 Mouse Model of Down Syndrome. PLoS ONE, 2016, 11, e0162974.	2.5	19
141	Differential hippocampal shapes in posterior cortical atrophy patients: A comparison with control and typical <scp>AD</scp> subjects. Human Brain Mapping, 2015, 36, 5123-5136.	3.6	19
142	Establishment of an open database of realistic simulated data for evaluation of partial volume correction techniques in brain PET/MR. EJNMMI Physics, 2015, 2, A44.	2.7	1
143	Using florbetapir positron emission tomography to explore cerebrospinal fluid cut points and gray zones in small sample sizes. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2015, 1, 440-446.	2.4	16
144	Geodesic Information Flows: Spatially-Variant Graphs and Their Application to Segmentation and Fusion. IEEE Transactions on Medical Imaging, 2015, 34, 1976-1988.	8.9	265

#	Article	IF	CITATIONS
145	Presymptomatic cognitive and neuroanatomical changes in genetic frontotemporal dementia in the Genetic Frontotemporal dementia Initiative (GENFI) study: a cross-sectional analysis. Lancet Neurology, The, 2015, 14, 253-262.	10.2	432
146	Multi-contrast attenuation map synthesis for PET/MR scanners: assessment on FDG and Florbetapir PET tracers. European Journal of Nuclear Medicine and Molecular Imaging, 2015, 42, 1447-1458.	6.4	35
147	Longitudinal measurement of the developing grey matter in preterm subjects using multi-modal MRI. NeuroImage, 2015, 111, 580-589.	4.2	68
148	Bayesian Model Selection for Pathological Neuroimaging Data Applied to White Matter Lesion Segmentation. IEEE Transactions on Medical Imaging, 2015, 34, 2079-2102.	8.9	123
149	Validation of clinical acceptability of an atlasâ€based segmentation algorithm for the delineation of organs at risk in head and neck cancer. Medical Physics, 2015, 42, 5027-5034.	3.0	52
150	Simulated field maps for susceptibility artefact correction in interventional MRI. International Journal of Computer Assisted Radiology and Surgery, 2015, 10, 1405-1416.	2.8	4
151	CT synthesis in the head & neck region for PET/MR attenuation correction: an iterative multi-atlas approach. EJNMMI Physics, 2015, 2, A31.	2.7	7
152	Assessing atrophy measurement techniques in dementia: Results from the MIRIAD atrophy challenge. NeuroImage, 2015, 123, 149-164.	4.2	63
153	Right ventricle segmentation from cardiac MRI: A collation study. Medical Image Analysis, 2015, 19, 187-202.	11.6	189
154	Evaluation of automatic neonatal brain segmentation algorithms: The NeoBrainS12 challenge. Medical Image Analysis, 2015, 20, 135-151.	11.6	85
155	Robust CT Synthesis for Radiotherapy Planning: Application to the Head and Neck Region. Lecture Notes in Computer Science, 2015, , 476-484.	1.3	20
156	Measuring Cortical Neurite-Dispersion and Perfusion in Preterm-Born Adolescents Using Multi-modal MRI. Lecture Notes in Computer Science, 2015, , 72-79.	1.3	1
157	Subject-specific Models for the Analysis of Pathological FDG PET Data. Lecture Notes in Computer Science, 2015, , 651-658.	1.3	1
158	Automatic Structural Parcellation of Mouse Brain MRI Using Multi-Atlas Label Fusion. PLoS ONE, 2014, 9, e86576.	2.5	60
159	Consensus between Pipelines in Structural Brain Networks. PLoS ONE, 2014, 9, e111262.	2.5	20
160	Investigation of outer cortical magnetisation transfer ratio abnormalities in multiple sclerosis clinical subgroups. Multiple Sclerosis Journal, 2014, 20, 1322-1330.	3.0	53
161	Brain volume estimation from post-mortem newborn and fetal MRI. NeuroImage: Clinical, 2014, 6, 438-444.	2.7	18
162	Preterm birth affects the developmental synergy between cortical folding and cortical connectivity observed on multimodal MRI. NeuroImage, 2014, 89, 23-34.	4.2	33

#	Article	IF	CITATIONS
163	Attenuation Correction Synthesis for Hybrid PET-MR Scanners: Application to Brain Studies. IEEE Transactions on Medical Imaging, 2014, 33, 2332-2341.	8.9	311
164	Attenuation correction synthesis for hybrid PET-MR scanners: validation for brain study applications. EJNMMI Physics, 2014, 1, A52.	2.7	3
165	STEPS: Similarity and Truth Estimation for Propagated Segmentations and its application to hippocampal segmentation and brain parcelation. Medical Image Analysis, 2013, 17, 671-684.	11.6	215
166	AdaPT: An adaptive preterm segmentation algorithm for neonatal brain MRI. NeuroImage, 2013, 65, 97-108.	4.2	68
167	Automated hippocampal segmentation in patients with epilepsy: Available free online. Epilepsia, 2013, 54, 2166-2173.	5.1	59
168	Atrophy Rates in Asymptomatic Amyloidosis: Implications for Alzheimer Prevention Trials. PLoS ONE, 2013, 8, e58816.	2.5	38
169	Classification of Alzheimer's disease patients and controls with Gaussian processes. , 2012, , .		5
170	Geodesic Shape-Based Averaging. Lecture Notes in Computer Science, 2012, 15, 26-33.	1.3	2
171	Parametric non-rigid registration using a stationary velocity field. , 2012, , .		25
172	Multi-STEPS: Multi-label similarity and truth estimation for propagated segmentations. , 2012, , .		14
173	Geodesic Information Flows. Lecture Notes in Computer Science, 2012, 15, 262-270.	1.3	27
174	Inverse-Consistent Symmetric Free Form Deformation. Lecture Notes in Computer Science, 2012, , 79-88.	1.3	20
175	Cross-sectional analysis using voxel or surface based cortical thickness methods: A comparison study. , 2011, , .		Ο
176	Integrating structural and diffusion MR information for optic radiation localisation in focal epilepsy patients. , 2011, , .		2
177	Adaptive Neonate Brain Segmentation. Lecture Notes in Computer Science, 2011, 14, 378-386.	1.3	9
178	LoAd: A locally adaptive cortical segmentation algorithm. NeuroImage, 2011, 56, 1386-1397.	4.2	81
179	A comparison of voxel and surface based cortical thickness estimation methods. NeuroImage, 2011, 57, 856-865.	4.2	163
180	Longitudinal Cortical Thickness Estimation Using Khalimsky's Cubic Complex. Lecture Notes in Computer Science, 2011, 14, 467-475.	1.3	2

# Ar	RTICLE	IF	CITATIONS
181 Re	eal-time tracking of self-reported symptoms to predict potential COVID-19. , 0, .		1