Oded Beja

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/779562/publications.pdf

Version: 2024-02-01

50170 58464 7,495 98 46 citations h-index papers

82 g-index 180 180 180 5392 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Proteorhodopsin phototrophy in the ocean. Nature, 2001, 411, 786-789.	13.7	740
2	Unsuspected diversity among marine aerobic anoxygenic phototrophs. Nature, 2002, 415, 630-633.	13.7	380
3	Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage. Environmental Microbiology, 2000, 2, 516-529.	1.8	313
4	Diversification and spectral tuning in marine proteorhodopsins. EMBO Journal, 2003, 22, 1725-1731.	3.5	284
5	Proteorhodopsin genes are distributed among divergent marine bacterial taxa. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12830-12835.	3.3	255
6	New Insights into Metabolic Properties of Marine Bacteria Encoding Proteorhodopsins. PLoS Biology, 2005, 3, e273.	2.6	218
7	Photosystem I gene cassettes are present in marine virus genomes. Nature, 2009, 461, 258-262.	13.7	195
8	A distinct abundant group of microbial rhodopsins discovered using functional metagenomics. Nature, 2018, 558, 595-599.	13.7	190
9	Marine Bacterial and Archaeal Ion-Pumping Rhodopsins: Genetic Diversity, Physiology, and Ecology. Microbiology and Molecular Biology Reviews, 2016, 80, 929-954.	2.9	173
10	Comparative Genomic Analysis of Archaeal Genotypic Variants in a Single Population and in Two Different Oceanic Provinces. Applied and Environmental Microbiology, 2002, 68, 335-345.	1.4	164
11	Reverse dissimilatory sulfite reductase as phylogenetic marker for a subgroup of sulfurâ€oxidizing prokaryotes. Environmental Microbiology, 2009, 11, 289-299.	1.8	162
12	Assessing diversity and biogeography of aerobic anoxygenic phototrophic bacteria in surface waters of the Atlantic and Pacific Oceans using the Global Ocean Sampling expedition metagenomes. Environmental Microbiology, 2007, 9, 1464-1475.	1.8	156
13	Phylogenetic analysis of ribosomal RNA operons from uncultivated coastal marine bacterioplankton. Environmental Microbiology, 2001, 3, 323-331.	1.8	152
14	Isolation and characterization of Erythrobacter sp. strains from the upper ocean. Archives of Microbiology, 2003, 180, 327-338.	1.0	149
15	Potential photosynthesis gene recombination between Prochlorococcus and Synechococcus via viral intermediates. Environmental Microbiology, 2005, 7, 1505-1513.	1.8	149
16	Comparative metagenomics of microbial traits within oceanic viral communities. ISME Journal, 2011, 5, 1178-1190.	4.4	135
17	The Light-Driven Proton Pump Proteorhodopsin Enhances Bacterial Survival during Tough Times. PLoS Biology, 2010, 8, e1000359.	2.6	124
18	Viral photosynthetic reaction center genes and transcripts in the marine environment. ISME Journal, 2007, 1, 492-501.	4.4	122

#	Article	IF	Citations
19	Novel Proteorhodopsin variants from the Mediterranean and Red Seas. Environmental Microbiology, 2003, 5, 842-849.	1.8	109
20	Different SAR86 subgroups harbour divergent proteorhodopsins. Environmental Microbiology, 2004, 6, 903-910.	1.8	106
21	Molecular ecology of nifH genes and transcripts in the eastern Mediterranean Sea. Environmental Microbiology, 2007, 9, 2354-2363.	1.8	105
22	Global abundance of microbial rhodopsins. ISME Journal, 2013, 7, 448-451.	4.4	104
23	Comparative community genomics in the Dead Sea: an increasingly extreme environment. ISME Journal, 2010, 4, 399-407.	4.4	101
24	Microbial Rhodopsins: The Last Two Decades. Annual Review of Microbiology, 2021, 75, 427-447.	2.9	98
25	Widespread distribution of proteorhodopsins in freshwater and brackish ecosystems. ISME Journal, 2008, 2, 656-662.	4.4	97
26	Darwinian adaptation of proteorhodopsin to different light intensities in the marine environment. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14824-14829.	3.3	96
27	Casting light on Asgardarchaeota metabolism in a sunlit microoxic niche. Nature Microbiology, 2019, 4, 1129-1137.	5.9	96
28	Molecular diversity among marine picophytoplankton as revealed by psbA analyses. Environmental Microbiology, 2003, 5, 212-216.	1.8	94
29	Bacterial anoxygenic photosynthesis on plant leaf surfaces. Environmental Microbiology Reports, 2012, 4, 209-216.	1.0	94
30	Novel Abundant Oceanic Viruses of Uncultured Marine Group II Euryarchaeota. Current Biology, 2017, 27, 1362-1368.	1.8	81
31	Novel Primers Reveal Wider Diversity among Marine Aerobic Anoxygenic Phototrophs. Applied and Environmental Microbiology, 2005, 71, 8958-8962.	1.4	80
32	Roseobacter -Like Bacteria in Red and Mediterranean Sea Aerobic Anoxygenic Photosynthetic Populations. Applied and Environmental Microbiology, 2005, 71, 344-353.	1.4	78
33	Microbial rhodopsins on leaf surfaces of terrestrial plants. Environmental Microbiology, 2012, 14, 140-146.	1.8	78
34	Potential for phosphite and phosphonate utilization by <i>Prochlorococcus</i> . ISME Journal, 2012, 6, 827-834.	4.4	77
35	Seasonal dynamics of the endosymbiotic, nitrogen-fixing cyanobacterium <i>Richelia intracellularis</i> in the eastern Mediterranean Sea. ISME Journal, 2008, 2, 911-923.	4.4	76
36	A myovirus encoding both photosystem I and II proteins enhances cyclic electron flow in infected Prochlorococcus cells. Nature Microbiology, 2017, 2, 1350-1357.	5.9	74

#	Article	IF	CITATIONS
37	Proteorhodopsin-Bearing Bacteria in Antarctic Sea Ice. Applied and Environmental Microbiology, 2010, 76, 5918-5925.	1.4	71
38	Crystal structure of heliorhodopsin. Nature, 2019, 574, 132-136.	13.7	71
39	Microbial community genomics in eastern Mediterranean Sea surface waters. ISME Journal, 2010, 4, 78-87.	4.4	66
40	Comparative metagenomic analyses reveal viral-induced shifts of host metabolism towards nucleotide biosynthesis. Microbiome, 2014, 2, 9.	4.9	66
41	Adaptation and spectral tuning in divergent marine proteorhodopsins from the eastern Mediterranean and the Sargasso Seas. ISME Journal, 2007, 1, 48-55.	4.4	65
42	Schizorhodopsins: A family of rhodopsins from Asgard archaea that function as light-driven inward H ⁺ pumps. Science Advances, 2020, 6, eaaz2441.	4.7	65
43	Is dinitrogen fixation significant in the Levantine Basin, East Mediterranean Sea?. Environmental Microbiology, 2011, 13, 854-871.	1.8	64
44	Bacterial, archaeal and viralâ€like rhodopsins from the <scp>R</scp> ed <scp>S</scp> ea. Environmental Microbiology Reports, 2013, 5, 475-482.	1.0	60
45	To BAC or not to BAC: marine ecogenomics. Current Opinion in Biotechnology, 2004, 15, 187-190.	3.3	56
46	MerMAIDs: a family of metagenomically discovered marine anion-conducting and intensely desensitizing channelrhodopsins. Nature Communications, 2019, 10, 3315.	5.8	56
47	Nature's toolkit for microbial rhodopsin ion pumps. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6538-6539.	3.3	55
48	Cyanophage tRNAs may have a role in cross-infectivity of oceanic <i>Prochlorococcus</i> and <i>Synechococcus</i> hosts. ISME Journal, 2012, 6, 619-628.	4.4	50
49	Characterization of RS29, a blue-green proteorhodopsin variant from the Red Sea. Photochemical and Photobiological Sciences, 2004, 3, 459-462.	1.6	46
50	Reconstructing a puzzle: existence of cyanophages containing both photosystemâ€l and photosystemâ€l gene suites inferred from oceanic metagenomic datasets. Environmental Microbiology, 2011, 13, 24-32.	1.8	46
51	Diversity of active marine picoeukaryotes in the Eastern Mediterranean Sea unveiled using photosystem-II <i>psbA</i> transcripts. ISME Journal, 2010, 4, 1044-1052.	4.4	43
52	Lateral Gene Transfer of Anion-Conducting Channelrhodopsins between Green Algae and Giant Viruses. Current Biology, 2020, 30, 4910-4920.e5.	1.8	42
53	Adaptation to sub-optimal hosts is a driver of viral diversification in the ocean. Nature Communications, 2018, 9, 4698.	5. 8	39
54	Functional metagenomic screen reveals new and diverse microbial rhodopsins. ISME Journal, 2016, 10, 2331-2335.	4.4	38

#	Article	IF	Citations
55	Functional marine metagenomic screening for anti-quorum sensing and anti-biofilm activity. Biofouling, 2017, 33, 1-13.	0.8	35
56	Identification of a tRNA-like molecule that copurifies with the 7SL RNA of Trypanosoma brucei. Molecular and Biochemical Parasitology, 1993, 57, 223-229.	0.5	33
57	Putative novel photosynthetic reaction centre organizations in marine aerobic anoxygenic photosynthetic bacteria: insights from metagenomics and environmental genomics. Environmental Microbiology, 2005, 7, 2027-2033.	1.8	33
58	Resonance Raman Investigation of the Chromophore Structure of Heliorhodopsins. Journal of Physical Chemistry Letters, 2018, 9, 6431-6436.	2.1	33
59	Mutation Study of Heliorhodopsin 48C12. Biochemistry, 2018, 57, 5041-5049.	1.2	32
60	Metagenomic retrieval of a ribosomal DNA repeat array from an uncultured marine alveolate. Environmental Microbiology, 2008, 10, 1335-1343.	1.8	31
61	Genomic and transcriptomic evidence of light-sensing, porphyrin biosynthesis, Calvin-Benson-Bassham cycle, and urea production in Bathyarchaeota. Microbiome, 2020, 8, 43.	4.9	31
62	The use of DGGE analyses to explore eastern Mediterranean and Red Sea marine picophytoplankton assemblages. Environmental Microbiology, 2004, 6, 528-534.	1.8	30
63	Heliorhodopsins are absent in diderm (Gramâ€negative) bacteria: Some thoughts and possible implications for activity. Environmental Microbiology Reports, 2019, 11, 419-424.	1.0	29
64	Seasonal and diel patterns of abundance and activity of viruses in the Red Sea. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29738-29747.	3.3	27
65	Ultrafast Dynamics of Heliorhodopsins. Journal of Physical Chemistry B, 2019, 123, 2507-2512.	1.2	24
66	Marine cyanophages: tinkering with the electron transport chain. ISME Journal, 2011, 5, 1568-1570.	4.4	23
67	New biosynthetic pathway for pink pigments from uncultured oceanic viruses. Environmental Microbiology, 2016, 18, 4337-4347.	1.8	23
68	Cyanophage-encoded lipid desaturases: oceanic distribution, diversity and function. ISME Journal, 2018, 12, 343-355.	4.4	23
69	Rhodopsin-bestrophin fusion proteins from unicellular algae form gigantic pentameric ion channels. Nature Structural and Molecular Biology, 2022, 29, 592-603.	3.6	23
70	Diverse heliorhodopsins detected via functional metagenomics in freshwater <i>Actinobacteria</i> , <i>Chloroflexi</i> and <i>Archaea</i> Environmental Microbiology, 2022, 24, 110-121.	1.8	22
71	The trypanosomatid Leptomonas collosoma 7SL RNA gene. Analysis of elements controlling its expression. Nucleic Acids Research, 1997, 25, 4977-4984.	6.5	21
72	BchY-Based Degenerate Primers Target All Types of Anoxygenic Photosynthetic Bacteria in a Single PCR. Applied and Environmental Microbiology, 2009, 75, 7556-7559.	1.4	21

#	Article	IF	CITATIONS
73	Comparative analyses of actinobacterial genomic fragments from Lake Kinneret. Environmental Microbiology, 2009, 11, 3189-3200.	1.8	19
74	Anion binding to mutants of the Schiff base counterion in heliorhodopsin 48C12. Physical Chemistry Chemical Physics, 2019, 21, 23663-23671.	1.3	18
75	The evolution of photosystem I in light of phage-encoded reaction centres. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 3400-3405.	1.8	17
76	Evolution and molecular mechanism of fourâ€electron reducing ferredoxinâ€dependent bilin reductases from oceanic phages. FEBS Journal, 2018, 285, 339-356.	2.2	17
77	The Use of a Chimeric Rhodopsin Vector for the Detection of New Proteorhodopsins Based on Color. Frontiers in Microbiology, 2018, 9, 439.	1.5	17
78	The use of denaturing gradient gel electrophoresis with fully degenerate pufM primers to monitor aerobic anoxygenic phototrophic assemblages. Limnology and Oceanography: Methods, 2008, 6, 427-440.	1.0	15
79	Exploration of natural red-shifted rhodopsins using a machine learning-based Bayesian experimental design. Communications Biology, 2021, 4, 362.	2.0	15
80	Viral clones from the GOS expedition with an unusual photosystem-I gene cassette organization. ISME Journal, 2012, 6, 1617-1620.	4.4	14
81	Bias in assessments of marine SAR11 biodiversity in environmental fosmid and BAC libraries?. ISME Journal, 2009, 3, 1117-1119.	4.4	13
82	Proteorhodopsins: Widespread Microbial Light-Driven Proton Pumps., 2013,, 280-285.		13
83	A novel uncultured marine cyanophage lineage with lysogenic potential linked to a putative marine <i>Synechococcus</i> å€relic' prophage. Environmental Microbiology Reports, 2019, 11, 598-604.	1.0	13
84	Saccharibacteria harness light energy using type-1 rhodopsins that may rely on retinal sourced from microbial hosts. ISME Journal, 2022, 16, 2056-2059.	4.4	13
85	Unique Photochemistry Observed in a New Microbial Rhodopsin. Journal of Physical Chemistry Letters, 2019, 10, 5117-5121.	2.1	11
86	Diversity of viral photosystem-I <i>psaA</i> genes. ISME Journal, 2015, 9, 1892-1898.	4.4	10
87	TAT Rhodopsin Is an Ultraviolet-Dependent Environmental pH Sensor. Biochemistry, 2021, 60, 899-907.	1.2	9
88	An elusive marine photosynthetic bacterium is finally unveiled. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2561-2562.	3.3	8
89	<scp>D</scp> ead <scp>S</scp> ea rhodopsins revisited. Environmental Microbiology Reports, 2012, 4, 617-621.	1.0	7
90	Closing the gaps on the viral photosystemâ€ <scp>I</scp> â€ <i>i>psa<scp>DCAB</scp></i> gene organization. Environmental Microbiology, 2015, 17, 5100-5108.	1.8	7

#	Article	lF	CITATIONS
91	Engineered Functional Recovery of Microbial Rhodopsin Without Retinalâ€Binding Lysine. Photochemistry and Photobiology, 2019, 95, 1116-1121.	1.3	7
92	An uncultured marine cyanophage encodes an active phycobilisome proteolysis adaptor protein NbIA. Environmental Microbiology Reports, 2019, 11, 848-854.	1.0	4
93	Communityâ€Level Analysis of Phototrophy: psbA Gene Diversity. Methods in Enzymology, 2005, 397, 372-380.	0.4	3
94	[27] Functional expression of mdr and mdr-like cDNAs in Escherichia coli. Methods in Enzymology, 1998, 292, 370-382.	0.4	2
95	Karyotype analysis of the monogenetic trypanosomatid Leptomonas collosoma. Molecular and Biochemical Parasitology, 1994, 66, 71-81.	0.5	1
96	Phage biology: Stuck with dU. Current Biology, 2021, 31, R898-R900.	1.8	1
97	Preparation of BAC Libraries from Marine Microbial Populations. Methods in Enzymology, 2013, 531, 111-122.	0.4	0
98	Section 4 Update - BAC library construction from marine microbial assemblages. , 2008, , 1863-1879.		0