Dong-Sheng Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7795412/publications.pdf

Version: 2024-02-01

262 papers 14,300 citations

23567
58
h-index

24258 110 g-index

264 all docs

264 docs citations

264 times ranked 11311 citing authors

#	Article	IF	CITATIONS
1	Amorphous alloys for electrocatalysis: The significant role of the amorphous alloy structure. Nano Research, 2023, 16, 4277-4288.	10.4	32
2	Uncovering the synergistic photocatalytic behavior of bimetallic molecular catalysts. Chinese Chemical Letters, 2023, 34, 107146.	9.0	4
3	Four new isostructural metal-organic frameworks constructed by a new butterfly-typed nitroheterocyclic carboxylic acid: Synthesis, crystal structures and properties. Journal of Solid State Chemistry, 2022, 305, 122617.	2.9	0
4	Stable 3D neutral gallium thioantimonate frameworks decorated with transition metal complexes for a tunable photocatalytic hydrogen evolution. Dalton Transactions, 2022, 51, 978-985.	3.3	5
5	Three novel Co(II)-MOFs with a conjugated tetrabenzoic acid supported noble metal nanoparticles for efficient catalytic reduction of 4-nitrophenol. Journal of Solid State Chemistry, 2022, 307, 122867.	2.9	4
6	Ferrocene-Functionalized Crystalline Biomimetic Catalysts for Efficient CO ₂ Photoreduction. Inorganic Chemistry, 2022, 61, 2167-2173.	4.0	8
7	Postsynthetic Modification of Metalâ^'Organic Frameworks for Photocatalytic Applications. Small Structures, 2022, 3, .	12.0	30
8	Efficient Visible-Light Photoreduction of CO ₂ to CH ₄ over an Fe-Based Metal–Organic Framework (PCN-250-Fe ₃) in a Solid–Gas Mode. ACS Applied Energy Materials, 2022, 5, 2384-2390.	5.1	27
9	Design of mesoporous Ni-Co hydroxides nanosheets stabilized by BO2- for pseudocapacitors with superior performance. Journal of Colloid and Interface Science, 2022, 614, 66-74.	9.4	8
10	Mechanistic insights into H ₂ evolution <i>via</i> water splitting at the expense of B ₂ (OH) ₄ : a theoretical study. Physical Chemistry Chemical Physics, 2022, 24, 8182-8188.	2.8	5
11	Facile in Situ Transformation of NiOOH into MOF-74(Ni)/NiO OH Heterogeneous Composite for Enchancing Electrocatalytic Methanol Oxidation. Molecules, 2022, 27, 2113.	3.8	4
12	Pillar-Layer Chiral MOFs as a Crystalline Platform for Circularly Polarized Luminescence and Single-Phase White-Light Emission. ACS Applied Materials & Samp; Interfaces, 2022, 14, 16435-16444.	8.0	22
13	Cu-MOF@PVP/PVDF hybrid composites as tunable proton-conducting materials. Journal of Solid State Chemistry, 2022, 310, 123070.	2.9	9
14	Visible-light-driven solvent-free photocatalytic CO2 reduction to CO by Co-MOF/Cu2O heterojunction with superior selectivity. Chemical Engineering Journal, 2022, 438, 135622.	12.7	103
15	Novel core-shell SnIn4S8@Bi2MoO6 heterojunction with highly-enhanced photocatalytic activity for visible light-driven Cr (VI) reduction. Applied Surface Science, 2022, 589, 152888.	6.1	16
16	Fe-doped CoFeâ€"P phosphides nanosheets dispersed on nickel foam derived from Prussian blue analogues as efficient electrocatalysts for the oxygen evolution reaction. Journal of Solid State Chemistry, 2022, 311, 123084.	2.9	4
17	Thermal treatment for promoting interfacial interaction in Co-BDC/Ti3C2T hybrid nanosheets for hybrid supercapacitors. Journal of Colloid and Interface Science, 2022, 617, 633-640.	9.4	19
18	Recent advances of functional heterometallic-organic framework (HMOF) materials: Design strategies and applications. Coordination Chemistry Reviews, 2022, 463, 214521.	18.8	45

#	Article	IF	CITATIONS
19	Construction and two-dimensional assembly of double-shell Na@Sn ₆ L ₆ 66@Sn ₃ L ₃ clusters through tetrahedral citrate ligands. Chemical Communications, 2022, 58, 5650-5652.	4.1	3
20	General Synthesis of Transitionâ€Metalâ€Based Carbonâ€Group Intermetallic Catalysts for Efficient Electrocatalytic Hydrogen Evolution in Wide pH Range. Advanced Energy Materials, 2022, 12, .	19.5	50
21	Postsynthetic Modification of Metalâ^'Organic Frameworks for Photocatalytic Applications. Small Structures, 2022, 3, .	12.0	3
22	Progress on 3Dâ€Printed Metalâ€Organic Frameworks with Hierarchical Structures. Advanced Materials Technologies, 2022, 7, .	5.8	10
23	Silverâ€Templated γâ€Keggin Alkyltinâ€Oxo Cluster: Electronic Structure and Optical Limiting Effect. Angewandte Chemie - International Edition, 2022, 61, .	13.8	14
24	Silverâ€Templated γâ€Keggin Alkyltinâ€Oxo Cluster: Electronic Structure and Optical Limiting Effect. Angewandte Chemie, 2022, 134, .	2.0	1
25	Heterogeneous Ni-MOF/V ₂ CT _{<i>x</i>} â€"MXene hierarchically-porous nanorods for robust and high energy density hybrid supercapacitors. Journal of Materials Chemistry A, 2022, 10, 12225-12234.	10.3	41
26	Interstitially O-doped Cd $<$ sub $><$ i $>xi>sub>Zn<sub>1\hat{a}^{'}<i>xi>sub>S solid solution derived from chalcogenide molecular clusters for photocatalytic hydrogen evolution. Inorganic Chemistry Frontiers, 2022, 9, 3771-3778.$	6.0	4
27	Turning on photoelectric activity by cation exchange within an anionic pyrene-based hydrogen-bonded organic framework. Dyes and Pigments, 2022, 205, 110506.	3.7	6
28	Topology- and Guest-Dependent Photoelectric Conversion of 2D Anionic Pyrene-Based Metal–Organic Framework. Crystal Growth and Design, 2022, 22, 4018-4024.	3.0	27
29	Self-assembly and near-infrared photothermal conversion research of molecular figure-of-eight. Journal of Solid State Chemistry, 2022, 313, 123320.	2.9	3
30	DFT-Guided Design and Fabrication of Carbon-Nitride-Based Materials for Energy Storage Devices: A Review. Nano-Micro Letters, 2021, 13, 13.	27.0	91
31	Amylopectin from Glutinous Rice as a Sustainable Binder for Highâ€Performance Silicon Anodes. Energy and Environmental Materials, 2021, 4, 263-268.	12.8	24
32	Electric field modulated ion-sieving effects of graphene oxide membranes. Journal of Materials Chemistry A, 2021, 9, 244-253.	10.3	4
33	Three new copper(II) coordination polymers constructed from isomeric sulfo-functionalized phthalate tectonics: Synthesis, crystal structure, photocatalytic and proton conduction properties. Journal of Solid State Chemistry, 2021, 294, 121860.	2.9	23
34	Two new pseudo-isomeric nickel (II) metal–organic frameworks with efficient electrocatalytic activity toward methanol oxidation. Rare Metals, 2021, 40, 489-498.	7.1	36
35	Convenient synthesis of polymetallic metal–organic gels for efficient methanol electro-oxidation. Inorganic Chemistry Frontiers, 2021, 8, 927-933.	6.0	11
36	Functional ligand directed assembly and electronic structure of Sn ₁₈ -oxo wheel nanoclusters. Chemical Communications, 2021, 57, 5159-5162.	4.1	4

#	Article	IF	CITATIONS
37	Recent advances in the "on–off―approaches for on-demand liquid-phase hydrogen evolution. Journal of Materials Chemistry A, 2021, 9, 18164-18174.	10.3	60
38	<i>In situ</i> synthesis of hierarchical NiCo-MOF@Ni NiCo-MOF@Ni _{1â^²x} Co _x (OH) ₂ heterostructures for enhanced pseudocapacitor and oxygen evolution reaction performances. Dalton Transactions, 2021, 50, 3060-3066.	3.3	23
39	Halide perovskite composites for photocatalysis: A mini review. EcoMat, 2021, 3, e12079.	11.9	60
40	An amorphous NiS _x film as a robust cocatalyst for boosting photocatalytic hydrogen generation over ultrafine ZnCdS nanoparticles. Materials Advances, 2021, 2, 3881-3891.	5.4	14
41	Oligomerized imide and thioimide organic cathode materials <i>via</i> a H-transfer mechanism for high capacity lithium ion batteries. Journal of Materials Chemistry A, 2021, 9, 18306-18312.	10.3	4
42	Exploring Reversible Thermochromic Behavior in a Rare Ni(II)-MOF System. ACS Applied Materials & Samp; Interfaces, 2021, 13, 6430-6441.	8.0	7
43	Influence of surfactants on rheological behaviors of polyacrylonitrile/dimethyl sulfoxide/silicon blending polymer solutions. Journal of Applied Polymer Science, 2021, 138, 50691.	2.6	1
44	Portable wastewater treatment system based on synergistic photocatalytic and persulphate degradation under visible light. Science China Materials, 2021, 64, 1952-1963.	6.3	6
45	Bifunctional electrocatalysts derived from cluster-based ternary sulfides for oxygen electrode reactions. Electrochimica Acta, 2021, 376, 138048.	5.2	8
46	A water-stable Zn (II) coordination polymer as fluorescent sensor for selective and sensitive detection of antibiotics and Fe3+. Journal of Solid State Chemistry, 2021, 296, 122032.	2.9	14
47	General Synthesis of Hierarchically Macro/Mesoporous Fe,Ni-Doped CoSe/N-Doped Carbon Nanoshells for Enhanced Electrocatalytic Oxygen Evolution. Inorganic Chemistry, 2021, 60, 6782-6789.	4.0	13
48	Common Strategy: Mounting the Rod-like Ni-Based MOF on Hydrangea-Shaped Nickel Hydroxide for Superior Electrocatalytic Methanol Oxidation Reaction. ACS Applied Materials & Samp; Interfaces, 2021, 13, 26472-26481.	8.0	51
49	Multifunctional Mulberryâ€like BiVO ₄ â^'Bi ₂ O ₃ pâ€n Heterostructures with Enhanced both Photocatalytic Reduction and Oxidation Activities. ChemCatChem, 2021, 13, 3357-3367.	3.7	10
50	A chalcogenide-cluster-based semiconducting nanotube array with oriented photoconductive behavior. Nature Communications, 2021, 12, 4275.	12.8	17
51	Two dimensional ultrathin MoSe2 bedecked Zn0.5Cd0.5S for reinforced photocatalytic H2 generation and toxic Cr (VI) reduction. Applied Surface Science, 2021, 554, 149649.	6.1	18
52	Superprotonic conductivity of a 3D anionic metal-organic framework by synergistic effect of guest [Me2NH2]+ cations, water molecules and host carboxylates. Journal of Solid State Chemistry, 2021, 299, 122168.	2.9	3
53	Bifunctional Pd@RhPd Core–Shell Nanodendrites for Methanol Electrolysis. ACS Applied Materials & Interfaces, 2021, 13, 35767-35776.	8.0	28
54	Engineering Synergistic Edgeâ€N Dipole in Metalâ€Free Carbon Nanoflakes toward Intensified Oxygen Reduction Electrocatalysis. Advanced Functional Materials, 2021, 31, 2103187.	14.9	54

#	Article	IF	CITATIONS
55	Review of Cathode in Advanced Liâ^'S Batteries: The Effect of Doping Atoms at Micro Levels. ChemElectroChem, 2021, 8, 3457-3471.	3.4	15
56	Controlled fabrication of Ag nanoparticles in situ embedded in metal organic gel (MOG) as an efficient recyclable catalyst for the reduction of nitrophenol compounds. Inorganic Chemistry Communication, 2021, 129, 108633.	3.9	7
57	A universal high-efficient and reusable "on–off―switch for the on-demand hydrogen evolution. Chemical Engineering Journal Advances, 2021, 7, 100128.	5.2	8
58	Dynamic Restructuring of Cuâ€Doped SnS ₂ Nanoflowers for Highly Selective Electrochemical CO ₂ Reduction to Formate. Angewandte Chemie, 2021, 133, 26437-26441.	2.0	8
59	Dynamic Restructuring of Cuâ€Doped SnS ₂ Nanoflowers for Highly Selective Electrochemical CO ₂ Reduction to Formate. Angewandte Chemie - International Edition, 2021, 60, 26233-26237.	13.8	66
60	0D/1D heterostructure for efficient electrocatalytic CO2-to-C1 conversion by ultra-small cluster-based multi-metallic sulfide nanoparticles and MWCNTs. Chemical Engineering Journal, 2021, 422, 130045.	12.7	12
61	A synergistic effect between S-scheme heterojunction and Noble-metal free cocatalyst to promote the hydrogen evolution of ZnO/CdS/MoS2 photocatalyst. Chemical Engineering Journal, 2021, 424, 130368.	12.7	90
62	0D/2D heterostructure constructed by ultra-small chalcogenide-cluster aggregated quaternary sulfides and g-C3N4 for enhanced photocatalytic H2 evolution. Chemical Engineering Journal, 2021, 426, 131216.	12.7	18
63	Sn ₆ and Na ₄ Oxo Clusters Based Non-centrosymmetric Framework for Solution Iodine Absorption and Second Harmonic Generation Response. Inorganic Chemistry, 2021, 60, 1985-1990.	4.0	10
64	Unveiling the impurity-modulated photoluminescence from Mn ²⁺ -containing metal chalcogenide semiconductors <i>via</i> Fe ²⁺ doping. Journal of Materials Chemistry C, 2021, 9, 13680-13686.	5.5	6
65	A novel copper-rich open-framework chalcogenide with chiral topology constructed from distinctive bimetallic [Cu ₅ SnSe ₁₀] clusters. Dalton Transactions, 2021, 50, 14985-14989.	3.3	6
66	Efficient Energy-Transfer-Induced High Photoelectric Conversion in a Dye-Encapsulated Ionic Pyrene-Based Metal–Organic Framework. Inorganic Chemistry, 2021, 60, 18593-18597.	4.0	75
67	In Situ Synthesis of Surface-Mounted Novel Nickel(II) Trimer-Based MOF on Nickel Oxide Hydroxide Heterostructures for Enhanced Methanol Electro-Oxidation. Frontiers in Chemistry, 2021, 9, 780688.	3.6	1
68	Three 2D polyhalogenated Co(II)-based MOFs: Syntheses, crystal structure and electrocatalytic hydrogen evolution reaction. Journal of Solid State Chemistry, 2020, 281, 121052.	2.9	25
69	A Novel dâ€f Heterometallic Cd ^{II} â€Eu ^{III} Metalâ€organic Framework as a Sensitive Luminescent Sensor for the Dual Detection of Ronidazole and 4â€Nitrophenol. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 268-274.	1.2	21
70	Hierarchical heterostructure of SnO ₂ confined on CuS nanosheets for efficient electrocatalytic CO ₂ reduction. Nanoscale, 2020, 12, 772-784.	5.6	41
71	Amorphous CoMoS4 Nanostructure for Photocatalytic H2 Generation, Nitrophenol Reduction, and Methylene Blue Adsorption. ACS Applied Nano Materials, 2020, 3, 68-76.	5.0	15
72	Three new entangled Zn(II)/Cd(II)-MOFs based on a triangular tri(4- imidazolylphenyl)amine and different carboxylic acid: Crystal structures, and luminescent properties. Inorganic Chemistry Communication, 2020, 112, 107702.	3.9	2

#	Article	IF	Citations
73	U-Shaped Helical Azaarenes: Synthesis, Structures, and Properties. Journal of Organic Chemistry, 2020, 85, 291-295.	3.2	10
74	Twoâ€Dimensional (2D) Covalent Organic Framework as Efficient Cathode for Binderâ€free Lithiumâ€lon Battery. ChemSusChem, 2020, 13, 2457-2463.	6.8	159
75	The highly selective detecting of antibiotics and support of noble metal catalysts by a multifunctional Eu-MOF. Dalton Transactions, 2020, 49, 14854-14862.	3.3	60
76	Atomically precise metal-chalcogenide semiconductor molecular nanoclusters with high dispersibility: Designed synthesis and intracluster photocarrier dynamics. Nano Research, 2020, 13, 2828-2836.	10.4	22
77	A Photoconductive Xâ€ray Detector with a High Figure of Merit Based on an Openâ€Framework Chalcogenide Semiconductor. Angewandte Chemie - International Edition, 2020, 59, 18605-18610.	13.8	21
78	Green Grinding-Coassembly Engineering toward Intrinsically Luminescent Tetracene in Cocrystals. ACS Nano, 2020, 14, 15962-15972.	14.6	54
79	Antimony-Assisted Assembly of Basic Supertetrahedral Clusters into Heterometallic Chalcogenide Supraclusters. Inorganic Chemistry, 2020, 59, 13000-13004.	4.0	6
80	Synthesis of Semiconducting 2H-Phase WTe ₂ Nanosheets with Large Positive Magnetoresistance. Inorganic Chemistry, 2020, 59, 11935-11939.	4.0	17
81	Two new layered metal chalcogenide frameworks as photocatalysts for highly efficient and selective dye degradation. Dalton Transactions, 2020, 49, 13276-13281.	3.3	5
82	Axial Cl/Br atom-mediated CO ₂ electroreduction performance in a stable porphyrin-based metal–organic framework. Chemical Communications, 2020, 56, 14817-14820.	4.1	10
83	Enhanced Water Dispersibility of Discrete Chalcogenide Nanoclusters with a Sodalite-Net Loose-Packing Pattern in a Crystal Lattice. Inorganic Chemistry, 2020, 59, 15587-15594.	4.0	18
84	New Insights into Mn–Mn Coupling Interaction-Directed Photoluminescence Quenching Mechanism in Mn ²⁺ -Doped Semiconductors. Journal of the American Chemical Society, 2020, 142, 6649-6660.	13.7	85
85	Investigation on the Component Evolution of a Tetranuclear Nickel-Cluster-Based Metal–Organic Framework in an Electrochemical Oxidation Reaction. Inorganic Chemistry, 2020, 59, 4764-4771.	4.0	42
86	Direct observation of charge transfer between molecular heterojunctions based on inorganic semiconductor clusters. Chemical Science, 2020, 11, 4085-4096.	7.4	16
87	A high-activity bimetallic OER cocatalyst for efficient photoelectrochemical water splitting of BiVO ₄ . Nanoscale, 2020, 12, 8875-8882.	5.6	21
88	Covalent–Organic Frameworks: Advanced Organic Electrode Materials for Rechargeable Batteries. Advanced Energy Materials, 2020, 10, 1904199.	19.5	425
89	Highly stable 3D porous HMOF with enhanced catalysis and fine color regulation by the combination of d- and p-ions when compared with those of its monometallic MOFs. Chemical Communications, 2020, 56, 8758-8761.	4.1	52
90	Multiâ€Metal Nanocluster Assisted Cuâ€Gaâ€Sn Triâ€Doping for Enhanced Photoelectrochemical Water Splitting of BiVO ₄ Film. Advanced Materials Interfaces, 2020, 7, 2000016.	3.7	16

#	Article	IF	CITATIONS
91	Metal–organic frameworks of Cu2(TPTC)-catalyzed cascade C–S coupling/Csp2–H hydroxylation reaction. Journal of the Iranian Chemical Society, 2020, 17, 1339-1345.	2.2	5
92	Two Copper-Rich Open-Framework Chalcogenides Built from Unusual [Cu5(SnxM1–x)Se10] Clusters and [(SnxM1–x)2Se6] Dimeric Linkers (M = In and Ga). Inorganic Chemistry, 2020, 59, 7919-7923.	4.0	4
93	In Situ Synthesis of Nano CuS-Embedded MOF Hierarchical Structures and Application in Dye Adsorption and Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 5698-5706.	5.1	28
94	Biâ€Microporous Metal–Organic Frameworks with Cubane [M ₄ (OH) ₄] (M=Ni,) Tj ETC	Qq0 0 0 rş 13.8	gBT /Overloc 350
95	Biâ€Microporous Metal–Organic Frameworks with Cubane [M ₄ (OH) ₄] (M=Ni,) Tj ETC	Qq1 1 0.7 2.0	84314 rgBT 47
96	Stable Bimetal-MOF Ultrathin Nanosheets for Pseudocapacitors with Enhanced Performance. Inorganic Chemistry, 2019, 58, 9543-9547.	4.0	48
97	A Waterâ€Stable Terbium(III)–Organic Framework as a Chemosensor for Inorganic Ions, Nitroâ€Containing Compounds and Antibiotics in Aqueous Solutions. Chemistry - an Asian Journal, 2019, 14, 3694-3701.	3.3	163
98	Nanostructured Metal–Organic Conjugated Coordination Polymers with Ligand Tailoring for Superior Rechargeable Energy Storage. Small, 2019, 15, e1903188.	10.0	57
99	Molecular Modulation of a Molybdenum–Selenium Cluster by Sulfur Substitution To Enhance the Hydrogen Evolution Reaction. Inorganic Chemistry, 2019, 58, 12415-12421.	4.0	9
100	Noble-metal-free amorphous CoMoSx modified CdS core-shell nanowires for dramatically enhanced photocatalytic hydrogen evolution under visible light irradiation. Applied Surface Science, 2019, 498, 143863.	6.1	40
101	A new 3D 8-fold interpenetrating 66-dia topological Co-MOF: Syntheses, crystal structure, magnetic properties and electrocatalytic hydrogen evolution reaction. Journal of Solid State Chemistry, 2019, 279, 120929.	2.9	24
102	A new cluster-based chalcogenide zeolite analogue with a large inter-cluster bridging angle. Inorganic Chemistry Frontiers, 2019, 6, 3063-3069.	6.0	14
103	Light-triggered evolution of molecular clusters toward sub-nanoscale heterojunctions with high interface density. Chemical Communications, 2019, 55, 8146-8149.	4.1	2
104	Bi ₄ O ₅ I ₂ flower/Bi ₂ S ₃ nanorod heterojunctions for significantly enhanced photocatalytic performance. CrystEngComm, 2019, 21, 4158-4168.	2.6	24
105	Exploring improvement of photocatalytic and catalytic performance in Nd-doped BiYO3 nanotube systems. Inorganic Chemistry Communication, 2019, 106, 151-157.	3.9	10
106	Surfactants as promising media in the field of metal-organic frameworks. Coordination Chemistry Reviews, 2019, 391, 30-43.	18.8	296
107	A multivalent mixed-metal strategy for single-Cu ⁺ -ion-bridged cluster-based chalcogenide open frameworks for sensitive nonenzymatic detection of glucose. Chemical Communications, 2019, 55, 6357-6360.	4.1	26
108	Integration of Semiconductor Oxide and a Microporous (3,10)-Connected Co6-Based Metal–Organic Framework for Enhanced Oxygen Evolution Reaction. Inorganic Chemistry, 2019, 58, 5837-5843.	4.0	61

#	Article	IF	CITATIONS
109	<i>In situ</i> synthesis of a Fe ₃ S ₄ /MIL-53(Fe) hybrid catalyst for an efficient electrocatalytic hydrogen evolution reaction. Chemical Communications, 2019, 55, 4570-4573.	4.1	63
110	One-pot hydrothermal synthesis of willow branch-shaped MoS2/CdS heterojunctions for photocatalytic H2 production under visible light irradiation. Chinese Journal of Catalysis, 2019, 40, 371-379.	14.0	136
111	A Water Stable Cd ^{II} â€based Metalâ€Organic Framework as a Multifunctional Sensor for Selective Detection of Cu ²⁺ and Cr ₂ O ₇ ^{2–} lons. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2019, 645, 484-489.	1.2	10
112	Two Penta-Supertetrahedral Cluster-Based Chalcogenide Open Frameworks: Effect of the Cluster Spatial Connectivity on the Electron-Transport Efficiency. Inorganic Chemistry, 2019, 58, 3582-3585.	4.0	18
113	Stable Hierarchical Bimetal–Organic Nanostructures as HighPerformance Electrocatalysts for the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2019, 58, 4227-4231.	13.8	430
114	Novel Composites of Graphiticâ€phase Nitrogen Carbon/Lanthanide Coordination Polymers as White Lightâ€emitting Phosphor. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2019, 645, 1279-1284.	1.2	2
115	Cooperativity by Multi-Metals Confined in Supertetrahedral Sulfide Nanoclusters To Enhance Electrocatalytic Hydrogen Evolution. Chemistry of Materials, 2019, 31, 553-559.	6.7	48
116	Monometallic Catalytic Models Hosted in Stable Metalâ€"Organic Frameworks for Tunable CO ₂ Photoreduction. ACS Catalysis, 2019, 9, 1726-1732.	11.2	297
117			

#	Article	IF	CITATIONS
127	Metathesis in Metal–Organic Gels (MOGs): A Facile Strategy to Construct Robust Fluorescent Lnâ€MOG Sensors for Antibiotics and Explosives. European Journal of Inorganic Chemistry, 2018, 2018, 186-193.	2.0	30
128	<i>In situ</i> synthesis of n–n Bi ₂ MoO ₆ & Bi ₂ S ₃ heterojunctions for highly efficient photocatalytic removal of Cr(<scp>vi</scp>). Journal of Materials Chemistry A, 2018, 6, 22580-22589.	10.3	200
129	Two new 3D isostructural Co/Ni-MOFs showing four-fold polyrotaxane-like networks: Synthesis, crystal structures and hydrogen evolution reaction. Inorganic Chemistry Communication, 2018, 98, 141-144.	3.9	20
130	Two-Dimensional and Emission-Tunable: An Unusual Perovskite Constructed from Lindqvist-Type [Pb6Br19]7– Nanoclusters. Inorganic Chemistry, 2018, 57, 14035-14038.	4.0	23
131	Natural Biomass-Derived Hierarchical Porous Carbon Synthesized by an <i>in Situ</i> Hard Template Coupled with NaOH Activation for Ultrahigh Rate Supercapacitors. ACS Sustainable Chemistry and Engineering, 2018, 6, 13949-13959.	6.7	128
132	Exploring the effects of intercluster torsion stress on Mn ²⁺ -related red emission from cluster-based layered metal chalcogenides. Journal of Materials Chemistry C, 2018, 6, 10480-10485.	5 . 5	10
133	Hybrid Assembly of Different-Sized Supertetrahedral Clusters into a Unique Non-Interpenetrated Mn–In–S Open Framework with Large Cavity. Inorganic Chemistry, 2018, 57, 6710-6715.	4.0	14
134	Metal–Organic Frameworks for Separation. Advanced Materials, 2018, 30, e1705189.	21.0	835
135	Two-Dimensional Boron Sheets as Metal-Free Catalysts for Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2018, 122, 19051-19055.	3.1	63
136	Four different dimensional Zn(II) coordination polymers as fluorescent sensor for detecting Hg2+, Cr2O72- in aqueous solution. Journal of Solid State Chemistry, 2018, 266, 181-188.	2.9	19
137	Tunable MoS ₂ /SnO ₂ P–N Heterojunctions for an Efficient Trimethylamine Gas Sensor and 4-Nitrophenol Reduction Catalyst. ACS Sustainable Chemistry and Engineering, 2018, 6, 12375-12384.	6.7	151
138	Metal Chalcogenide Imidazolate Frameworks with Hybrid Intercluster Bridging Mode and Unique Interrupted Topological Structure. Inorganic Chemistry, 2018, 57, 9790-9793.	4.0	12
139	Improved conductivity of a new Co(<scp>ii</scp>)-MOF by assembled acetylene black for efficient hydrogen evolution reaction. CrystEngComm, 2018, 20, 4804-4809.	2.6	45
140	A new 2D Co 5 -cluster based MOF: Crystal structure, magnetic properties and electrocatalytic hydrogen evolution reaction. Inorganic Chemistry Communication, 2018, 95, 73-77.	3.9	24
141	A Microporous Heterovalent Copper–Organic Framework Based on [Cu ₂ sub>4 Secondary Building Units: High Performance for CO ₂ Adsorption and Separation and Iodine Sorption and Release, Crystal Growth and Design, 2018, 18, 5449-5455.	3.0	29
142	Stable Supersupertetrahedron with Infinite Order via the Assembly of Supertetrahedral T4 Zinc–Indium Sulfide Clusters. Inorganic Chemistry, 2018, 57, 10485-10488.	4.0	14
143	The Largest Supertetrahedral Oxychalcogenide Nanocluster and Its Unique Assembly. Journal of the American Chemical Society, 2018, 140, 11189-11192.	13.7	64
144	Novel Zn _{0.8} Cd _{0.2} S@g-C ₃ N ₄ core–shell heterojunctions with a twin structure for enhanced visible-light-driven photocatalytic hydrogen generation. Journal of Materials Chemistry A, 2018, 6, 17086-17094.	10.3	85

#	Article	IF	CITATIONS
145	Tuning the gate opening pressure of a flexible doubly interpenetrated metal–organic framework through ligand functionalization. Dalton Transactions, 2018, 47, 13158-13163.	3.3	24
146	Pore Space Partition in Metal–Organic Frameworks. Accounts of Chemical Research, 2017, 50, 407-417.	15.6	423
147	Disulfideâ€Directed C–H Hydroxylation for Synthesis of Sulfonyl Diphenyl Sulfides and 2â€(Phenylthio)phenols with Oxygen as Oxidant. Advanced Synthesis and Catalysis, 2017, 359, 779-785.	4.3	53
148	Anionic Lanthanide MOFs as a Platform for Iron-Selective Sensing, Systematic Color Tuning, and Efficient Nanoparticle Catalysis. Inorganic Chemistry, 2017, 56, 1402-1411.	4.0	157
149	Ag-NPs embedded in two novel Zn ₃ /Zn ₅ -cluster-based metal–organic frameworks for catalytic reduction of 2/3/4-nitrophenol. Dalton Transactions, 2017, 46, 2430-2438.	3.3	49
150	Significant centre metallic effects on the sensing properties of two isostructural lanthanide metal-organic frameworks. Inorganic Chemistry Communication, 2017, 79, 12-16.	3.9	10
151	Cocrystal of {Ti ₄ } and {Ti ₆ } Clusters with Enhanced Photochemical Properties. Inorganic Chemistry, 2017, 56, 2367-2370.	4.0	28
152	Dual emissions from MnS clusters confined in the sodalite nanocage of a chalcogenide-based semiconductor zeolite. Dalton Transactions, 2017, 46, 3929-3933.	3.3	11
153	A Multifunctional Tb-MOF for Highly Discriminative Sensing of Eu ³⁺ /Dy ³⁺ and as a Catalyst Support of Ag Nanoparticles. Small, 2017, 13, 1602996.	10.0	227
154	Enhanced Catalytic Reduction of $\langle i \rangle p \langle i \rangle$ -Nitrophenol on Ultrathin MoS $\langle sub \rangle 2 \langle sub \rangle$ Nanosheets Decorated with Noble Metal Nanoparticles. Crystal Growth and Design, 2017, 17, 3538-3547.	3.0	138
155	Enhancing Proton Conductivity in a 3D Metal–Organic Framework by the Cooperation of Guest [Me ₂ NH ₂] ⁺ Cations, Water Molecules, and Host Carboxylates. Crystal Growth and Design, 2017, 17, 3556-3561.	3.0	50
156	Substituent-Modulated Assembly Formation: An Approach to Enhancing the Photostability of Photoelectric-Sensitive Chalcogenide-Based Ion-Pair Hybrids. Inorganic Chemistry, 2017, 56, 3119-3122.	4.0	7
157	Temperature-Controlled Synthesis of Porous CuO Particles with Different Morphologies for Highly Sensitive Detection of Triethylamine. Crystal Growth and Design, 2017, 17, 2158-2165.	3.0	92
158	PCU-type copper-rich open-framework chalcogenides: pushing up the length limit of the connection mode and the first mixed-metal [Cu ₇ GeSe ₁₃] cluster. Inorganic Chemistry Frontiers, 2017, 4, 387-392.	6.0	20
159	Polyoxomolybdate–Polypyrrole/Reduced Graphene Oxide Nanocomposite as High-Capacity Electrodes for Lithium Storage. ACS Omega, 2017, 2, 5684-5690.	3.5	39
160	Rücktitelbild: Surfactantâ€Assisted Phaseâ€Selective Synthesis of New Cobalt MOFs and Their Efficient Electrocatalytic Hydrogen Evolution Reaction (Angew. Chem. 42/2017). Angewandte Chemie, 2017, 129, 13332-13332.	2.0	0
161	In-MOFs-derived microsphere In2O3 for highly sensitive detecting formaldehyde vapor. Inorganic Chemistry Communication, 2017, 85, 100-104.	3.9	7
162	Synthesis of a Ni ₂ P/Ni ₁₂ P ₅ bi-phase nanocomposite for the efficient catalytic reduction of 4-nitrophenol based on the unique nâ€"n heterojunction effects. Dalton Transactions, 2017, 46, 14107-14113.	3.3	36

#	Article	IF	CITATIONS
163	Assembly of supertetrahedral clusters into a Cu–In–S superlattice via an unprecedented vertex–edge connection mode. CrystEngComm, 2017, 19, 4709-4712.	2.6	10
164	A heterometallic sodium–europium-cluster-based metal–organic framework as a versatile and water-stable chemosensor for antibiotics and explosives. Journal of Materials Chemistry C, 2017, 5, 8469-8474.	5 . 5	168
165	Surfactantâ€Assisted Phaseâ€Selective Synthesis of New Cobalt MOFs and Their Efficient Electrocatalytic Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2017, 56, 13001-13005.	13.8	334
166	Surfactantâ€Assisted Phaseâ€Selective Synthesis of New Cobalt MOFs and Their Efficient Electrocatalytic Hydrogen Evolution Reaction. Angewandte Chemie, 2017, 129, 13181-13185.	2.0	58
167	Understanding the structure-determining solid fluorescence of an azaacene derivative. Journal of Materials Chemistry C, 2017, 5, 8869-8874.	5.5	35
168	Cation-Exchanged Zeolitic Chalcogenides for CO ₂ Adsorption. Inorganic Chemistry, 2017, 56, 14999-15005.	4.0	44
169	Efficient Gas-Sensing for Formaldehyde with 3D Hierarchical Co ₃ O ₄ Derived from Co ₅ -Based MOF Microcrystals. Inorganic Chemistry, 2017, 56, 14111-14117.	4.0	81
170	Pouous TiO 2 nanofibers decorated CdS nanoparticles by SILAR method for enhanced visible-light-driven photocatalytic activity. Applied Surface Science, 2017, 391, 295-302.	6.1	93
171	Improving Photoluminescence Emission Efficiency of Nanocluster-Based Materials by in Situ Doping Synthetic Strategy. Journal of Physical Chemistry C, 2016, 120, 29390-29396.	3.1	24
172	A Water-Stable Metal–Organic Framework for Highly Sensitive and Selective Sensing of Fe ³⁺ Ion. Inorganic Chemistry, 2016, 55, 10580-10586.	4.0	230
173	An Ultrastable Europium(III)–Organic Framework with the Capacity of Discriminating Fe ²⁺ /Fe ³⁺ lons in Various Solutions. Inorganic Chemistry, 2016, 55, 10114-10117.	4.0	186
174	Synthesis, Crystal Structures, and Fluorescent Properties of Two ZnII/CdIICoordination Polymers Constructed from Isomeric Ligands. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2016, 642, 81-84.	1.2	1
175	A multi-responsive luminescent sensor based on a super-stable sandwich-type terbium(<scp>iii</scp>)–organic framework. Dalton Transactions, 2016, 45, 15492-15499.	3.3	201
176	A Terbiumâ€Organic Framework Material for Highly Sensitive Sensing of Fe ³⁺ in Aqueous and Biological Systems: Experimental Studies and Theoretical Analysis. ChemistrySelect, 2016, 1, 3555-3561.	1.5	31
177	Exploring Mn ²⁺ -location-dependent red emission from (Mn/Zn)–Ga–Sn–S supertetrahedral nanoclusters with relatively precise dopant positions. Journal of Materials Chemistry C, 2016, 4, 10435-10444.	5.5	31
178	PEG assisted hydrothermal synthesis of hierarchical MoS2 microspheres with excellent adsorption behavior. Materials Letters, 2016, 169, 241-245.	2.6	106
179	Equilibrium and kinetic studies on MB adsorption by ultrathin 2D MoS ₂ nanosheets. RSC Advances, 2016, 6, 11631-11636.	3.6	140
180	Mechanochromic Cu(<scp>i</scp>) boron imidazolate frameworks with low-dimensional structures and reducing function. Inorganic Chemistry Frontiers, 2016, 3, 263-267.	6.0	26

#	Article	IF	CITATIONS
181	Assembly of Two Novel Cd ₃ /(Cd ₃ + Cd ₅)-Cluster-Based Metalâ€"Organic Frameworks: Structures, Luminescence, and Photocatalytic Degradation of Organic Dyes. Crystal Growth and Design, 2016, 16, 2309-2316.	3.0	135
182	Novel and Efficient Heterogeneous 4-Methylbenzenesulfonic Acid-Based Ionic Liquid Supported on Silica Gel for Greener Fischer Indole Synthesis. Catalysis Letters, 2016, 146, 968-976.	2.6	12
183	A Robust Luminescent Tb(III)-MOF with Lewis Basic Pyridyl Sites for the Highly Sensitive Detection of Metal lons and Small Molecules. Inorganic Chemistry, 2016, 55, 3265-3271.	4.0	516
184	Two Coordination Polymers based on 2â€Ethylâ€1Hâ€imidazoleâ€4,5â€dicarboxylic Acid and 1,3â€Bis(4â€pyridyl)propane: Synthesis, Crystal Structures, and Photoluminescent Properties. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 848-852.	1.2	5
185	Assembly of a Three-Dimensional Metal–Organic Framework with Copper(I) lodide and 4-(Pyrimidin-5-yl) Benzoic Acid: Controlled Uptake and Release of Iodine. Crystal Growth and Design, 2015, 15, 915-920.	3.0	60
186	A New Pb(II)-Coordination Polymer With 1,3-Phenylenediacetic Acid Featuring Different Polymeric Chain Units: Synthesis, Crystal Structure, and Luminescent Property. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2015, 45, 974-978.	0.6	0
187	Biphenyl-2,4,6,3′,5′-pentacarboxylic acid as a tecton for six new Co(<scp>ii</scp>) coordination polymers: pH and N-donor ligand-dependent assemblies, structure diversities and magnetic properties. Dalton Transactions, 2015, 44, 14673-14685.	3.3	32
188	[Co(H ₂ O) ₆] ²⁺ and H ₃ O ⁺ encapsulated in a unique 3D anionic Co(<scp>ii</scp>) framework with hydrophilic hexagonal and circular channels. CrystEngComm, 2015, 17, 7034-7037.	2.6	8
189	Synthesis, structure, physical properties and OLED application of pyrazine–triphenylamine fused conjugated compounds. RSC Advances, 2015, 5, 63080-63086.	3.6	33
190	A new surfactant-introduction strategy for separating the pure single-phase of metal–organic frameworks. Chemical Communications, 2015, 51, 9479-9482.	4.1	142
191	Two (3,6)-connected porous metal–organic frameworks based on linear trinuclear [Co ₃ (COO) ₆] and paddlewheel dinuclear [Cu ₂ (COO) ₄] SBUs: gas adsorption, photocatalytic behaviour, and magnetic properties, lournal of Materials Chemistry A. 2015. 3, 6962-6969.	10.3	213
192	Efficient and convenient oxidation of aldehydes and ketones to carboxylic acids and esters with H ₂ O ₂ catalyzed by Co ₄ HP ₂ Mo ₁₅ V ₃ O ₆₂ in ionic liquid [TEBSA][BF ₄]. RSC Advances, 2015, 5, 24936-24943.	3.6	11
193	Unique topological motifs in two Cd(<scp>ii</scp>)-coordination polymers: mutual-embedded 2D bilayers, 3D polythreaded structures, self-penetrated networks and 2D â†' 2D interpenetrated homochiral bilayers. CrystEngComm, 2015, 17, 9055-9061.	2.6	19
194	4-Diphenylamino-phenyl substituted pyrazine: nonlinear optical switching by protonation. Journal of Materials Chemistry C, 2015, 3, 9191-9196.	5.5	93
195	Surfactant-thermal method to prepare two new cobalt metal-organic frameworks. Journal of Solid State Chemistry, 2015, 232, 14-18.	2.9	14
196	Three Metal–Organic Frameworks Based on Binodal Inorganic Building Units and Hetero-O, N Donor Ligand: Solvothermal Syntheses, Structures, and Gas Sorption Properties. Crystal Growth and Design, 2015, 15, 4901-4907.	3.0	55
197	Three Novel Lanthanide Metal-Organic Frameworks (Ln-MOFs) Constructed by Unsymmetrical Aromatic Dicarboxylatic Tectonics: Synthesis, Crystal Structures and Luminescent Properties. Molecules, 2014, 19, 14352-14365.	3.8	7
198	The first 3-fold interpenetrating framework containing both azobenzene-3,3 \hat{a} e²-dicarboxylicate and 1,2-bis(4-pyridyl)ethylene. Complex Metals: an Open Access Journal, 2014, 1, 122-127.	0.6	0

#	Article	IF	Citations
199	A series of divalent metal coordination polymers based on isomeric tetracarboxylic acids: synthesis, structures and magnetic properties. Dalton Transactions, 2014, 43, 17519-17527.	3.3	67
200	Crystal Structures and Photoluminescence Properties of Zinc(II) and Cadmium(II) Coordination Polymers with "Y―Shaped Ligands. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 2268-2273.	1.2	3
201	Zinc(II) and Cadmium(II) Coordination Polymers Based on 5â∈Hydroxylisophthalate and Semiâ€rigid Bis(imidazole) Ligands: Syntheses, Structural and Photoluminescent Properties. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 1665-1669.	1.2	3
202	Structural diversity and properties of six coordination polymers derived from 1,2/1,3-phenylenedioxydiacetic acids and varied N-donor co-ligands. Inorganica Chimica Acta, 2014, 413, 6-15.	2.4	10
203	Metal-organic frameworks based upon non-zeotype 4-connected topology. Coordination Chemistry Reviews, 2014, 261, 1-27.	18.8	286
204	A Novel Aqua Ligand Assisted Water Octamer Confinement in the Hydrophilic Channels of a Zn(II) Supramolecular Architecture. Journal of Inorganic and Organometallic Polymers and Materials, 2014, 24, 796-801.	3.7	4
205	Synthesis, crystal structures, and magnetic properties of two Cu (II)-complexes based on <i>in situ</i> generated 5-NO ₂ -2-hydroxyisophthalic acid. Journal of Coordination Chemistry, 2014, 67, 1629-1638.	2.2	4
206	Distinct Temperature-Dependent CO ₂ Sorption of Two Isomeric Metal–Organic Frameworks. Crystal Growth and Design, 2014, 14, 2003-2008.	3.0	31
207	Polymorphism-dependent and piezochromic luminescence based on molecular packing of a conjugated molecule. Chemical Science, 2014, 5, 3922-3928.	7.4	136
208	Assembly of Two Flexible Metal–Organic Frameworks with Stepwise Gas Adsorption and Highly Selective CO2 Adsorption. Crystal Growth and Design, 2014, 14, 2375-2380.	3.0	42
209	A new penta-carboxylate and N-donor ligand co-regulate 3D Coll-MOF with tcj/hc topology: Synthesis, structure and magnetic property. Inorganic Chemistry Communication, 2014, 44, 188-190.	3.9	20
210	Characterization and Synthesis of Two New ZnII and CdII-Coordination Polymers Based on 3,3′-Biphenyl Dicarboxylate and N,N'-Donor Co-ligands. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 652-658.	3.7	2
211	Hydrothermal Synthesis, Crystal Structure and Characterization of a Novel threefold Interpenetrating lyt Framework Based on a 104-Membered [Cd(Bix)] 8 16+ Ring. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 446-451.	3.7	1
212	Two new Cu(II) complexes constructed by mixed-organic tectonics: Structures, magnetic properties and photocatalytic degradation of organic dyes. Inorganic Chemistry Communication, 2013, 36, 137-140.	3.9	24
213	A new highly-connected 3D [Co4(\hat{l}^4 3-OH)2] cluster-based framework from different dicarboxylates and N-donor co-ligands: Synthesis, structure and magnetic property. Inorganic Chemistry Communication, 2013, 33, 86-89.	3.9	22
214	Synthesis of mesoporous Bi2WO6 architectures and their gas sensitivity to ethanol. Journal of Materials Chemistry C, 2013, 1, 4153.	5.5	86
215	Co ₅ /Co ₈ –Cluster-Based Coordination Polymers Showing High-Connected Self-Penetrating Networks: Syntheses, Crystal Structures, and Magnetic Properties. Inorganic Chemistry, 2013, 52, 8091-8098.	4.0	212
216	Two solvent-dependent manganese(ii) supramolecular isomers: solid-state transformation and magnetic properties. CrystEngComm, 2013, 15, 5412.	2.6	47

#	Article	IF	CITATIONS
217	A rare pentanuclear Cull-based coordination framework exhibiting coexistence of antiferromagnetic and ferromagnetic couplings. Inorganic Chemistry Communication, 2013, 35, 61-64.	3.9	8
218	The first one-fold inclined 1D \hat{a} † 3D polycatenation assembly from unique interweaving triple-stranded helices. CrystEngComm, 2013, 15, 2791.	2.6	23
219	Hydrothermal Synthesis, Crystal Structure and Spectroscopic Characterization of a Novel 2DÂ→Â3D Parallel Polycatenated Coordination Framework [Cd(cmb)(bix)] n. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 1341-1346.	3.7	2
220	Unique 3D Coll/Znll-coordination polymers with (3,4,5)-connected self-penetrating topology: Syntheses, topological structures, luminescent and magnetic properties. RSC Advances, 2012, 2, 11219.	3 . 6	16
221	Isomeric phenylenediacetates as modular tectons for a series of ZnII/CdII coordination polymers incorporating flexible bis(imidazole) co-ligands. CrystEngComm, 2012, 14, 4745.	2.6	48
222	Encapsulation of Discrete (H2O)4 Clusters in a 1D Tube-Like Metal-Organic Coordination Polymer. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2012, 42, 628-633.	0.6	2
223	Monodispersed Ag nanoparticles loaded on the surface of spherical Bi2WO6 nanoarchitectures with enhanced photocatalytic activities. Journal of Materials Chemistry, 2012, 22, 4751.	6.7	194
224	Two Unique Entangling Cd ^{II} -Coordination Frameworks Constructed by Square Cd ₄ -Building Blocks and Auxiliary N,N′-Donor Ligands. Crystal Growth and Design, 2012, 12, 1697-1702.	3.0	96
225	Hydrothermal Synthesis, Crystal Structure and Spectroscopic Characterization of a Novel 2DÂ→Â2D Parallel Interpenetrated Coordination Polymer [Zn2(pdoa)2(bpp)2(H2O)]·4H2O. Journal of Inorganic and Organometallic Polymers and Materials, 2012, 22, 860-866.	3.7	2
226	Two unique (4,5,6)-connected 2D CdII coordination polymers based on the 5-nitro-1,2,3-benzenetricarboxylate ligand. RSC Advances, 2011, 1, 180.	3 . 6	20
227	Structural diversity and fluorescent properties of Zn(ii)/Cd(ii) coordination polymers with a versatile tecton 2-(carboxymethoxy)benzoic acid and N-donor co-ligands. CrystEngComm, 2011, 13, 6601.	2.6	46
228	Unusual 3D ZnII coordination networks with mixed tetrahedral and square-planar building units: from 2-fold interpenetrating bbf architecture to self-penetrating 86 topological frameworks. CrystEngComm, 2011, 13, 3355.	2.6	39
229	Stoichiometry of N-Donor Ligand Mediated Assembly in the Zn ^{II} -Hfipbb System: From a 2-Fold Interpenetrating Pillared-Network to Unique (3,4)-Connected Isomeric Nets. Crystal Growth and Design, 2011, 11, 3850-3857.	3.0	57
230	Anthraquinoneâ€2,6â€disulfonate as Versatile Ligand for the Synthesis of Hydrogenâ€Bonded Supramolecules. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2011, 637, 1432-1437.	1.2	1
231	Four Zn(II)/Cd(II) coordination polymers derived from isomeric benzenedicarboxylates and 1,6-bis(triazol)hexane ligand: synthesis, crystal structure, and luminescent properties. Journal of Coordination Chemistry, 2011, 64, 2329-2341.	2.2	23
232	A Novel Cd(II) Coordination Polymer Constructed from Benzenedicarboxylic Acid and 1,2-Bis(triazol)ethane: Synthesis, Crystal Structure, and Luminescent Properties. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2011, 41, 877-882.	0.6	3
233	A Novel Selfâ€assembled Dodecameric Water Cluster Stabilized by a Citrateâ€Bridged Copper(II) Compound. Chinese Journal of Chemistry, 2010, 28, 943-949.	4.9	4
234	Double-bowed nanoscale decanuclear copper(II) assemblies based on tartaric acid. Inorganica Chimica Acta, 2010, 363, 957-960.	2.4	8

#	Article	IF	CITATIONS
235	In situ attained Cdll-coordination polymer with (3,4,9)-connected topology based on trinuclear Cdll clusters. Inorganic Chemistry Communication, 2010, 13, 484-487.	3.9	15
236	3D PbII-coordination framework based on rod-shaped Pb–O–Pb SBUs defining a new (4,5)-connected net topology. Inorganic Chemistry Communication, 2010, 13, 1005-1008.	3.9	40
237	Coordination assemblies of CdII/ZnII/CoII with the 3-(pyridin-4-yl) benzoate tecton: Structural diversity and properties. Inorganic Chemistry Communication, 2010, 13, 1126-1130.	3.9	18
238	An Unprecedented Eight-Connected Self-Penetrating Coordination Framework Based on Cage-Shaped [Pb ₆ ($1\frac{4}{\text{sub}}$ 4 ₄ -0) ₂ (0 ₂ C) ₈] Clusters. Crystal Growth and Design, 2010, 10, 2037-2040.	3.0	127
239	A Novel (3,6,6)-Connected 3D Supramolecular Framework Constructed from 2D (4,4) Coordination Network [Pb(H ₂ pimdc) ₂ (H ₂ O) ₂] _n . Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2010, 40, 762-767.	0.6	1
240	Unique 3D self-penetrating Coll and Nill coordination frameworks with a new (44.610.8) network topology. Dalton Transactions, 2010, 39, 11522.	3.3	90
241	A versatile V-shaped tetracarboxylate building block for constructing mixed-ligand Co(ii) and Mn(ii) complexes incorporating various N-donor co-ligands. CrystEngComm, 2010, 12, 1227-1237.	2.6	61
242	(4, 5)-Connected 3D Supramolecular Framework Based on 1D Tube-Shaped Coordination Armed-Chains [Mn(4, 4 â \in 2-bipy)(OAc) ₂] _n . Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2009, 39, 373-378.	0.6	3
243	Two Novel 3D Hydrogenâ€bonded Architectures Constructed from Maleic Acid and Nâ€donor Ligands: Structures, Magnetic Properties and Theoretical Studies. Chinese Journal of Chemistry, 2009, 27, 273-280.	4.9	3
244	Syntheses, Structures and Luminescence Properties of Lnâ€Coordination Polymers Based on Flexible Thiodiacetic Acid Ligand. Chinese Journal of Chemistry, 2009, 27, 1481-1486.	4.9	9
245	An unusual 2-fold interpenetrated 3D PtS framework containing circular and rhombic tubular building blocks and hydrogen-bonded –O–metal–O–chain. Inorganic Chemistry Communication, 2009, 12, 657-659.	3.9	16
246	A novel CdII coordination polymer with helical units and mix-connected network topology constructed form 2-propyl-4,5-imidazoledicarboxylate and N-donor co-ligands. Inorganic Chemistry Communication, 2009, 12, 793-795.	3.9	38
247	A novel 3D Cdll-coordination framework with helical units in a mixed flexible ligand system: Encapsulating right-handed helical water chains. Inorganic Chemistry Communication, 2009, 12, 1027-1030.	3.9	32
248	Template-Free Hydrothermal Synthesis of Novel Three-Dimensional Dendritic CdS Nanoarchitectures. Journal of Physical Chemistry C, 2009, 113, 5984-5990.	3.1	74
249	Microporous 3-D chiral metal-organic framework with a quartzlike topology based on an achiral building unit. Journal of Coordination Chemistry, 2009, 62, 2665-2674.	2.2	18
250	From 1D Polymeric Chain to Twoâ€fold Parallel Interpenetration of (4,4) Net: Synthesis and Characterization of Two New Copper(II) Complexes Derived from Highly Polydentate Aminopolycarboxylate Ligand. Chinese Journal of Chemistry, 2008, 26, 1233-1238.	4.9	3
251	The structure and magnetic properties of a 3D pillared-layer polymer and two helical chains constructed from flexible ligands. Journal of Molecular Structure, 2008, 888, 344-353.	3.6	21
252	Characterization of a well-resolved water layer containing (H2O)40 water morphology via dianion templating. Inorganic Chemistry Communication, 2008, 11, 621-625.	3.9	11

#	Article	IF	CITATIONS
253	A novel 4·82 CdII network constructed from helical motif: Incorporating alternate left- and right-hand helical water chains. Inorganic Chemistry Communication, 2008, 11, 958-960.	3.9	19
254	{[Dy2(bpdc)3(H2O)3]·H2O}n (bpdc=2,2′-bipyridine-4,4′-dicarboxylate): A highly-thermostable 3D coordination polymer with unusual mixed-connected network topology. Inorganic Chemistry Communication, 2008, 11, 1260-1263.	3.9	20
255	1D zigzag chain and 0D monomer Cd(II)/Zn(II) compounds based on flexible phenylenediacetic ligand: Synthesis, crystal structures and fluorescent properties. Journal of Molecular Structure, 2008, 892, 283-288.	3.6	51
256	A Novel Two-Dimensional Heterometallic Coordination Polymer Containing Unusual Hetero-Chiral Helical Chains. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2008, 38, 524-528.	0.6	3
257	A 3D interpenetrating supramolecular compound based on Cu ··· N weak coordination: synthesis, crystal structure and DFT investigation. Journal of Coordination Chemistry, 2008, 61, 2916-2925.	2.2	3
258	Unprecedented Interweaving of Hetero-Chiral Single Helical Chains into a 3D Chiral Framework with (10, 3) Topology. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2008, 38, 652-656.	0.6	1
259	Ligand and pH-Controlled ZnIIBilayer Coordination Polymers Based on Biphenyl-3,3â€~,4,4â€~-tetracarboxylate. Crystal Growth and Design, 2007, 7, 1514-1521.	3.0	136
260	Novel 3â€D Supramolecular Architectures Constructed from Zn ²⁺ ions, Oxybis(4â€benzoate) and Di(2â€pyridyl)amine Ligands. Chinese Journal of Chemistry, 2007, 25, 1641-1645.	4.9	4
261	Formation of Two-Dimensional Supramolecular Water Layer Containing (H2O)18Morphology via Dianion Templating. Crystal Growth and Design, 2006, 6, 812-814.	3.0	57
262	1-D Open-Channeled 3-D Supramolecular Self-Assembled Frameworks Encapsulating Unprecedented Cyclic (H2O)8 Clusters or Solvent Molecules. European Journal of Inorganic Chemistry, 2005, 2005, 2678-2684.	2.0	54