
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7795383/publications.pdf Version: 2024-02-01

ΔΝΟΡΕΛ Ι ΥΩΟΙ

#	Article	IF	CITATIONS
1	Differential antiangiogenic and anticancer activities of the active metabolites of ginsenoside Rg3. Journal of Ginseng Research, 2024, 48, 171-180.	3.0	4
2	Recent breakthroughs and future directions in drugging aquaporins. Trends in Pharmacological Sciences, 2022, 43, 30-42.	4.0	60
3	Aquaporin ion conductance properties defined by membrane environment, protein structure, and cell physiology. Biophysical Reviews, 2022, 14, 181-198.	1.5	8
4	Signaling Mechanisms and Pharmacological Modulators Governing Diverse Aquaporin Functions in Human Health and Disease. International Journal of Molecular Sciences, 2022, 23, 1388.	1.8	50
5	Targeting Aquaporins in Novel Therapies for Male and Female Breast and Reproductive Cancers. Cells, 2021, 10, 215.	1.8	13
6	In Vitro Synergistic Inhibition of HT-29 Proliferation and 2H-11 and HUVEC Tubulogenesis by Bacopaside I and II Is Associated with Ca2+ Flux and Loss of Plasma Membrane Integrity. Pharmaceuticals, 2021, 14, 436.	1.7	2
7	Adaptable and Multifunctional Ion-Conducting Aquaporins. Annual Review of Plant Biology, 2021, 72, 703-736.	8.6	60
8	The potential role of glial cells in driving the prion-like transcellular propagation of tau in tauopathies. Brain, Behavior, & Immunity - Health, 2021, 14, 100242.	1.3	14
9	Novel Ion Channel Targets and Drug Delivery Tools for Controlling Glioblastoma Cell Invasiveness. International Journal of Molecular Sciences, 2021, 22, 11909.	1.8	7
10	Inhibition of the Aquaporin-1 Cation Conductance by Selected Furan Compounds Reduces Red Blood Cell Sickling. Frontiers in Pharmacology, 2021, 12, 794791.	1.6	3
11	Inhibition of aquaporin-1 prevents myocardial remodeling by blocking the transmembrane transport of hydrogen peroxide. Science Translational Medicine, 2020, 12, .	5.8	39
12	Combined Systematic Review and Transcriptomic Analyses of Mammalian Aquaporin Classes 1 to 10 as Biomarkers and Prognostic Indicators in Diverse Cancers. Cancers, 2020, 12, 1911.	1.7	22
13	Insecticidal activity of marigold Tagetes patula plants and foliar extracts against the hemipteran pests, Lygus hesperus and Bemisia tabaci. PLoS ONE, 2020, 15, e0233511.	1.1	23
14	5-Hydroxymethyl-Furfural and Structurally Related Compounds Block the Ion Conductance in Human Aquaporin-1 Channels and Slow Cancer Cell Migration and Invasion. Molecular Pharmacology, 2020, 98, 38-48.	1.0	21
15	Molecular Targets for Combined Therapeutic Strategies to Limit Glioblastoma Cell Migration and Invasion. Frontiers in Pharmacology, 2020, 11, 358.	1.6	29
16	Stereoselective Anti-Cancer Activities of Ginsenoside Rg3 on Triple Negative Breast Cancer Cell Models. Pharmaceuticals, 2019, 12, 117.	1.7	34
17	Combined pharmacological administration of AQP1 ion channel blocker AqB011 and water channel blocker Bacopaside II amplifies inhibition of colon cancer cell migration. Scientific Reports, 2019, 9, 12635.	1.6	30
18	Bacopasides I and II Act in Synergy to Inhibit the Growth, Migration and Invasion of Breast Cancer Cell Lines. Molecules, 2019, 24, 3539.	1.7	24

#	Article	IF	CITATIONS
19	Fractional Deletion of Compound Kushen Injection Indicates Cytokine Signaling Pathways are Critical for its Perturbation of the Cell Cycle. Scientific Reports, 2019, 9, 14200.	1.6	10
20	Effect of Compound Kushen Injection, a Natural Compound Mixture, and Its Identified Chemical Components on Migration and Invasion of Colon, Brain, and Breast Cancer Cell Lines. Frontiers in Oncology, 2019, 9, 314.	1.3	51
21	Bumetanide-Derived Aquaporin 1 Inhibitors, AqB013 and AqB050 Inhibit Tube Formation of Endothelial Cells through Induction of Apoptosis and Impaired Migration In Vitro. International Journal of Molecular Sciences, 2019, 20, 1818.	1.8	20
22	Development of a Photoswitchable Lithium-Sensitive Probe to Analyze Nonselective Cation Channel Activity in Migrating Cancer Cells. Molecular Pharmacology, 2019, 95, 573-583.	1.0	17
23	Real-Time Imaging of Lithium â€~Hot-Spots': An Analysis of Ion Conductance in Aquaporin-1 using Novel Photo-Switchable Sensor. Biophysical Journal, 2018, 114, 360a.	0.2	0
24	Fundamental structural and functional properties of Aquaporin ion channels found across the kingdoms of life. Clinical and Experimental Pharmacology and Physiology, 2018, 45, 401-409.	0.9	35
25	The Purified Extract from the Medicinal Plant Bacopa monnieri, Bacopaside II, Inhibits Growth of Colon Cancer Cells In Vitro by Inducing Cell Cycle Arrest and Apoptosis. Cells, 2018, 7, 81.	1.8	41
26	The Aquaporin 1 Inhibitor Bacopaside II Reduces Endothelial Cell Migration and Tubulogenesis and Induces Apoptosis. International Journal of Molecular Sciences, 2018, 19, 653.	1.8	29
27	Mechanisms of Aquaporin-Facilitated Cancer Invasion and Metastasis. Frontiers in Chemistry, 2018, 6, 135.	1.8	87
28	Identification of Loop D Domain Amino Acids in the Human Aquaporin-1 Channel Involved in Activation of the Ionic Conductance and Inhibition by AqB011. Frontiers in Chemistry, 2018, 6, 142.	1.8	19
29	The Etiology of Basal Vacuolizations in Renal Tubular Epithelial Cells Evaluated in an Isolated Perfused Kidney Model. Journal of Forensic Sciences, 2017, 62, 915-920.	0.9	4
30	Basal Vacuolization in Renal Tubular Epithelial Cells at Autopsy and Their Relation to Ketoacidosis. Journal of Forensic Sciences, 2017, 62, 681-685.	0.9	10
31	Armanni–Ebstein Lesions in Terminal Hyperglycemia. Journal of Forensic Sciences, 2017, 62, 921-925.	0.9	11
32	An Isolated Perfused Rat Kidney Model for the Evaluation of the Effect of Glucose on Renal Tubular Epithelial Morphology. Journal of Forensic Sciences, 2017, 62, 126-130.	0.9	2
33	Nonâ€selective cation channel activity of aquaporin AtPIP2;1 regulated by Ca ²⁺ and pH. Plant, Cell and Environment, 2017, 40, 802-815.	2.8	153
34	Role of Aquaporin 1 Signalling in Cancer Development and Progression. International Journal of Molecular Sciences, 2017, 18, 299.	1.8	95
35	Divalent Cations Regulate the Ion Conductance Properties of Diverse Classes of Aquaporins. International Journal of Molecular Sciences, 2017, 18, 2323.	1.8	57
36	Rhubarb extract partially improves mucosal integrity in chemotherapy-induced intestinal mucositis. World Journal of Gastroenterology, 2016, 22, 8322.	1.4	19

#	Article	IF	CITATIONS
37	Differential Inhibition of Water and Ion Channel Activities of Mammalian Aquaporin-1 by Two Structurally Related Bacopaside Compounds Derived from the Medicinal Plant <i>Bacopa monnieri</i> . Molecular Pharmacology, 2016, 90, 496-507.	1.0	50
38	Pharmacological blockade of aquaporin-1 water channel by AqB013 restricts migration and invasiveness of colon cancer cells and prevents endothelial tube formation in vitro. Journal of Experimental and Clinical Cancer Research, 2016, 35, 36.	3.5	60
39	Bumetanide Derivatives AqB007 and AqB011 Selectively Block the Aquaporin-1 Ion Channel Conductance and Slow Cancer Cell Migration. Molecular Pharmacology, 2016, 89, 133-140.	1.0	54
40	Formalin pigment deposition in the renal tubules in ketoacidosis. Pathology, 2015, 47, S85.	0.3	0
41	Hypothermia and renal tubular vacuolisation revisited. Pathology, 2015, 47, S85-S86.	0.3	1
42	A progressive assessment strategy improves student learning and perceived course quality in undergraduate physiology. American Journal of Physiology - Advances in Physiology Education, 2015, 39, 218-222.	0.8	4
43	Renal Tubular Epithelial Vacuoles—A Marker for Both Hyperlipidemia and Ketoacidosis at Autopsy. Journal of Forensic Sciences, 2015, 60, 638-641.	0.9	11
44	Lethal hypothermia in an animal model, not associated with basal renal epithelial vacuolization. Journal of Clinical Forensic and Legal Medicine, 2014, 21, 14-16.	0.5	11
45	Molecular and functional characterization of multiple aquaporin water channel proteins from the western tarnished plant bug, Lygus hesperus. Insect Biochemistry and Molecular Biology, 2014, 45, 125-140.	1.2	31
46	Basal epithelial formalin pigment deposition in the kidneys – A useful marker for ketoacidosis at autopsy. Journal of Clinical Forensic and Legal Medicine, 2013, 20, 305-307.	0.5	16
47	<scp>A</scp> rmanni – <scp>E</scp> bstein Lesions: A Need for Clarification. Journal of Forensic Sciences, 2013, 58, S94-8.	0.9	35
48	Renal Cortical Pallor — A Useful Macroscopic Marker for Metabolic Derangements at Autopsy. Journal of Forensic Sciences, 2013, 58, 693-696.	0.9	5
49	AqF026 Is a Pharmacologic Agonist of the Water Channel Aquaporin-1. Journal of the American Society of Nephrology: JASN, 2013, 24, 1045-1052.	3.0	52
50	Inhibition of aquaporin-1 but not aquaporin-4 water permeability by bacopaside I derived from Bacopa monnieri. Planta Medica, 2013, 79, .	0.7	0
51	The Activity of Human Aquaporin 1 as a cGMP-Gated Cation Channel Is Regulated by Tyrosine Phosphorylation in the Carboxyl-Terminal Domain. Molecular Pharmacology, 2012, 81, 97-105.	1.0	49
52	Modulation of aquaporin 1 function alters proliferation of malignant mesothelial cells. Pathology, 2012, 44, S74.	0.3	0
53	Structure, function and translational relevance of aquaporin dual water and ion channels. Molecular Aspects of Medicine, 2012, 33, 553-561.	2.7	70
54	Stimulation of Aquaporin-Mediated Fluid Transport by Cyclic GMP in Human Retinal Pigment Epithelium In Vitro. , 2012, 53, 2127.		13

#	Article	IF	CITATIONS
55	Identification and characterization of functional aquaporin water channel protein from alimentary tract of whitefly, Bemisia tabaci. Insect Biochemistry and Molecular Biology, 2011, 41, 178-190.	1.2	43
56	Fluid-percussion brain injury induces changes in aquaporin channel expression. Neuroscience, 2011, 180, 272-279.	1.1	22
57	Water and urea permeation pathways of the human excitatory amino acid transporter EAAT1. Biochemical Journal, 2011, 439, 333-340.	1.7	21
58	Roles for novel pharmacological blockers of aquaporins in the treatment of brain oedema and cancer. Clinical and Experimental Pharmacology and Physiology, 2010, 37, 403-409.	0.9	67
59	Aquaporin-1: New Developments and Perspectives for Peritoneal Dialysis. Peritoneal Dialysis International, 2010, 30, 135-141.	1.1	19
60	Inhibition of Aquaporin-1 and Aquaporin-4 Water Permeability by a Derivative of the Loop Diuretic Bumetanide Acting at an Internal Pore-Occluding Binding Site. Molecular Pharmacology, 2009, 76, 105-112.	1.0	137
61	Role of aquaporin-1 in trabecular meshwork cell homeostasis during mechanical strain. Experimental Eye Research, 2009, 89, 95-100.	1.2	38
62	Over-expression of the potassium channel Kir2.3 using the dopamine-1 receptor promoter selectively inhibits striatal neurons. Neuroscience, 2008, 155, 114-127.	1.1	14
63	Chapter 2 Ocular Aquaporins and Aqueous Humor Dynamics. Current Topics in Membranes, 2008, 62, 47-70.	0.5	6
64	Functional Domains of Aquaporin-1: Keys to Physiology, and Targets for Drug Discovery. Current Pharmaceutical Design, 2007, 13, 3212-3221.	0.9	43
65	Aquaporins: Multiple Roles in the Central Nervous System. Neuroscientist, 2007, 13, 470-485.	2.6	77
66	Dominant-Negative Suppression of Big Brain Ion Channel Activity by Mutation of a Conserved Glutamate in the First Transmembrane Domain. Gene Expression, 2006, 13, 329-337.	0.5	6
67	Mechanism of Gating and Ion Conductivity of a Possible Tetrameric Pore in Aquaporin-1. Structure, 2006, 14, 1411-1423.	1.6	149
68	Ion Channel Function of Aquaporin-1 Natively Expressed in Choroid Plexus. Journal of Neuroscience, 2006, 26, 7811-7819.	1.7	90
69	Physiological Roles of Aquaporins in the Choroid Plexus. Current Topics in Developmental Biology, 2005, 67, 181-206.	1.0	34
70	Block by Extracellular Divalent Cations of Drosophila Big Brain Channels Expressed in Xenopus Oocytes. Biophysical Journal, 2004, 86, 1470-1478.	0.2	19
71	Novel roles for aquaporins as gated ion channels. Advances in Molecular and Cell Biology, 2004, , 351-379.	0.1	6
72	Single amino acids in the carboxyl terminal domain of aquaporin-1 contribute to cGMP-dependent ion channel activation. BMC Physiology, 2003, 3, 12.	3.6	38

#	Article	IF	CITATIONS
73	Developmental regulation of the a-type potassium-channel current in hippocampal neurons: role of the kvl²1.1 subunit. Neuroscience, 2003, 120, 387-404.	1.1	18
74	New Roles for Old Holes: Ion Channel Function in Aquaporin-1. Physiology, 2002, 17, 68-72.	1.6	56
75	A fascinating tail: cGMP activation of aquaporin-1 ion channels. Trends in Pharmacological Sciences, 2002, 23, 558-562.	4.0	44
76	Regulated Cationic Channel Function in <i>Xenopus</i> Oocytes Expressing <i>Drosophila</i> Big Brain. Journal of Neuroscience, 2002, 22, 2530-2540.	1.7	61
77	Differential regulation of Ca2+-dependent Clâ^' currents by FP prostanoid receptor isoforms in Xenopus oocytes. Biochemical Pharmacology, 2002, 63, 1797-1806.	2.0	6
78	Tetraethylammonium block of water flux in Aquaporin-1 channels expressed in kidney thin limbs of Henle's loop and a kidney-derived cell line. BMC Physiology, 2002, 2, 4.	3.6	71
79	Distinct Mechanisms of Block of Kv1.5 Channels by Tertiary and Quaternary Amine Clofilium Compounds. Biophysical Journal, 2001, 81, 2606-2613.	0.2	9
80	Viral vector-mediated expression of K+ channels regulates electrical excitability in skeletal muscle. Gene Therapy, 2001, 8, 1372-1379.	2.3	13
81	A herpes simplex viral vector expressing green fluorescent protein can be used to visualize morphological changes in high-density neuronal culture. Electronic Journal of Biotechnology, 2001, 4, 20-21.	1.2	1
82	Antisense knockdown of calcium-dependent K+ channels in developing cerebellar Purkinje neurons. Developmental Brain Research, 2000, 120, 135-140.	2.1	9
83	Cloned Human Aquaporin-1 Is a Cyclic GMP-Gated Ion Channel. Molecular Pharmacology, 2000, 57, 576-588.	1.0	160
84	Inhibition of aquaporin-1 water permeability by tetraethylammonium: involvement of the loop E pore region. Molecular Pharmacology, 2000, 57, 1021-6.	1.0	104
85	Differential expression of three classes of voltage-gated Ca2+ channels during maturation of the rat cerebellum in vitro. Developmental Brain Research, 1999, 115, 161-170.	2.1	13
86	Expression of Niemann–Pick type C transcript in rodent cerebellum in vivo and in vitro. Brain Research, 1999, 839, 49-57.	1.1	24
87	Differential sensitivity of voltage-gated potassium channels Kv1.5 and Kv1.2 to acidic pH and molecular identification of pH sensor. Molecular Pharmacology, 1999, 55, 812-20.	1.0	62
88	Morphological consequences of altered calcium-dependent transmembrane signaling on the development of cultured cerebellar Purkinje neurons. Developmental Brain Research, 1998, 107, 165-167.	2.1	10
89	Increased calcium-dependent K+ channel activity contributes to the maturation of cellular firing patterns in developing cerebellar Purkinje neurons. Developmental Brain Research, 1998, 108, 193-203.	2.1	22
90	Regulation of Ca2+-Dependent K+Channel Expression in Rat Cerebellum during Postnatal Development. Journal of Neuroscience, 1998, 18, 16-25.	1.7	60

#	Article	IF	CITATIONS
91	Anomalous mole fraction effect induced by mutation of the H5 pore region in the Shaker K+ channel. Biophysical Journal, 1996, 71, 2467-2472.	0.2	11
92	Forskolin Stimulation of Water and Cation Permeability in Aquaporin1 Water Channels. Science, 1996, 273, 1216-1218.	6.0	152
93	Cloning of a receptor for prostaglandin F2 alpha from the ovine corpus luteum Endocrinology, 1995, 136, 3430-3436.	1.4	57
94	Interactions of the H5 pore region and hydroxylamine with N-type inactivation in the Shaker K+ channel. Biophysical Journal, 1995, 68, 448-458.	0.2	19
95	Block of the inactivating potassium channel by clofilium and hydroxylamine depends on the sequence of the pore region. Molecular Pharmacology, 1994, 46, 970-6.	1.0	9
96	Multiple ionic mechanisms are activated by the potent agonist quisqualate in cultured cerebellar Purkinje neurons. Brain Research, 1992, 573, 83-94.	1.1	15
97	Developmental changes in calcium conductances contribute to the physiological maturation of cerebellar Purkinje neurons in culture. Journal of Neuroscience, 1992, 12, 2838-2848.	1.7	56
98	Single-channel K+ currents recorded from the somatic and dendritic regions of cerebellar Purkinje neurons in culture. Journal of Neuroscience, 1991, 11, 1002-1015.	1.7	54
99	Alteration of ionic selectivity of a K+ channel by mutation of the H5 region. Nature, 1991, 349, 700-704.	13.7	513
100	Amplified RNA synthesized from limited quantities of heterogeneous cDNA Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 1663-1667.	3.3	1,179
101	Multiple voltage-sensitive K+ channels regulate dendritic excitability in cerebellar Purkinje neurons. Neuroscience Letters, 1989, 97, 97-102.	1.0	15
102	Unique properties of non-N-methyl-D-aspartate excitatory responses in cultured purkinje neurons Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 3404-3408.	3.3	32
103	Developmental changes in K+-selective channel activity during differentiation of the Purkinje neuron in culture. Journal of Neuroscience, 1988, 8, 1971-1980.	1.7	60
104	Development of spontaneous and glutamate-evoked activity is altered by chronic ethanol in cultured cerebellar Purkinje neurons. Brain Research, 1987, 420, 205-219.	1.1	29
105	EXCESS POTASSIUM INDUCES LARVAL METAMORPHOSIS IN FOUR MARINE INVERTEBRATE SPECIES. Biological Bulletin, 1986, 170, 255-266.	0.7	131
106	Cloning of a receptor for prostaglandin F2 alpha from the ovine corpus luteum. , 0, .		17