Tsuyoshi Goto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7795180/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	BCAA catabolism in brown fat controls energy homeostasis through SLC25A44. Nature, 2019, 572, 614-619.	27.8	332
2	Dietary Capsaicin Reduces Obesityâ€induced Insulin Resistance and Hepatic Steatosis in Obese Mice Fed a Highâ€fat Diet. Obesity, 2010, 18, 780-787.	3.0	244
3	Dual action of isoprenols from herbal medicines on both PPARÎ ³ and PPARα in 3T3-L1 adipocytes and HepG2 hepatocytes. FEBS Letters, 2002, 514, 315-322.	2.8	196
4	Activation of peroxisome proliferator-activated receptor-alpha stimulates both differentiation and fatty acid oxidation in adipocytes. Journal of Lipid Research, 2011, 52, 873-884.	4.2	175
5	Fish oil intake induces UCP1 upregulation in brown and white adipose tissue via the sympathetic nervous system. Scientific Reports, 2016, 5, 18013.	3.3	143
6	6-Shogaol and 6-gingerol, the pungent of ginger, inhibit TNF-α mediated downregulation of adiponectin expression via different mechanisms in 3T3-L1 adipocytes. Biochemical and Biophysical Research Communications, 2008, 373, 429-434.	2.1	140
7	Triiodothyronine induces UCP-1 expression and mitochondrial biogenesis in human adipocytes. American Journal of Physiology - Cell Physiology, 2012, 302, C463-C472.	4.6	138
8	Overexpression and Ribozyme-mediated Targeting of Transcriptional Coactivators CREB-binding Protein and p300 Revealed Their Indispensable Roles in Adipocyte Differentiation through the Regulation of Peroxisome Proliferator-activated Receptor Î ³ . Journal of Biological Chemistry, 2002, 277, 16906-16912.	3.4	133
9	Inhibitory effect of naringenin chalcone on inflammatory changes in the interaction between adipocytes and macrophages. Life Sciences, 2007, 81, 1272-1279.	4.3	127
10	Diosgenin, the Main Aglycon of Fenugreek, Inhibits LXRα Activity in HepG2 Cells and Decreases Plasma and Hepatic Triglycerides in Obese Diabetic Mice. Journal of Nutrition, 2011, 141, 17-23.	2.9	124
11	Various Terpenoids Derived from Herbal and Dietary Plants Function as PPAR Modulators and Regulate Carbohydrate and Lipid Metabolism. PPAR Research, 2010, 2010, 1-9.	2.4	122
12	Diosgenin present in fenugreek improves glucose metabolism by promoting adipocyte differentiation and inhibiting inflammation in adipose tissues. Molecular Nutrition and Food Research, 2010, 54, 1596-1608.	3.3	120
13	Macrophage infiltration into obese adipose tissues suppresses the induction of UCP1 level in mice. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E676-E687.	3.5	106
14	Quercetin Protects against Obesity-Induced Skeletal Muscle Inflammation and Atrophy. Mediators of Inflammation, 2014, 2014, 1-10.	3.0	103
15	Quercetin reduces obesity-induced hepatosteatosis by enhancing mitochondrial oxidative metabolism via heme oxygenase-1. Nutrition and Metabolism, 2015, 12, 33.	3.0	103
16	Inflammation induced by RAW macrophages suppresses <i>UCP1</i> mRNA induction via ERK activation in 10T1/2 adipocytes. American Journal of Physiology - Cell Physiology, 2013, 304, C729-C738.	4.6	102
17	Tiliroside, a glycosidic flavonoid, ameliorates obesity-induced metabolic disorders via activation of adiponectin signaling followed by enhancement of fatty acid oxidation in liver and skeletal muscle in obese–diabetic mice. Journal of Nutritional Biochemistry, 2012, 23, 768-776.	4.2	101
18	Citrus auraptene acts as an agonist for PPARs and enhances adiponectin production and MCP-1 reduction in 3T3-L1 adipocytes. Biochemical and Biophysical Research Communications, 2008, 366, 219-225.	2.1	92

#	Article	IF	CITATIONS
19	Phytol directly activates peroxisome proliferator-activated receptor α (PPARα) and regulates gene expression involved in lipid metabolism in PPARα-expressing HepG2 hepatocytes. Biochemical and Biophysical Research Communications, 2005, 337, 440-445.	2.1	91
20	Bixin regulates mRNA expression involved in adipogenesis and enhances insulin sensitivity in 3T3-L1 adipocytes through PPARÎ ³ activation. Biochemical and Biophysical Research Communications, 2009, 390, 1372-1376.	2.1	89
21	Proinflammatory cytokine interleukin- $\hat{1}^2$ suppresses cold-induced thermogenesis in adipocytes. Cytokine, 2016, 77, 107-114.	3.2	88
22	Dehydroabietic acid, a phytochemical, acts as ligand for PPARs in macrophages and adipocytes to regulate inflammation. Biochemical and Biophysical Research Communications, 2008, 369, 333-338.	2.1	81
23	Capsaicin inhibits the production of tumor necrosis factor α by LPS-stimulated murine macrophages, RAW 264.7: a PPARγ ligand-like action as a novel mechanism. FEBS Letters, 2004, 572, 266-270.	2.8	79
24	Functional Food Targeting the Regulation of Obesity-Induced Inflammatory Responses and Pathologies. Mediators of Inflammation, 2010, 2010, 1-8.	3.0	78
25	Abietic acid activates peroxisome proliferator-activated receptor-γ (PPARγ) in RAW264.7 macrophages and 3T3-L1 adipocytes to regulate gene expression involved in inflammation and lipid metabolism. FEBS Letters, 2003, 550, 190-194.	2.8	75
26	Lack of <scp>TRPV</scp> 2 impairs thermogenesis in mouse brown adipose tissue. EMBO Reports, 2016, 17, 383-399.	4.5	71
27	Luteolin, a foodâ€derived flavonoid, suppresses adipocyteâ€dependent activation of macrophages by inhibiting JNK activation. FEBS Letters, 2009, 583, 3649-3654.	2.8	70
28	αâ€Linolenic acidâ€derived metabolites from gut lactic acid bacteria induce differentiation of antiâ€inflammatory M2 macrophages through G proteinâ€coupled receptor 40. FASEB Journal, 2018, 32, 304-318.	0.5	69
29	Single-cell analysis of human skin identifies CD14+ type 3 dendritic cells co-producing IL1B and IL23A in psoriasis. Journal of Experimental Medicine, 2021, 218, .	8.5	68
30	10â€oxoâ€12(<i>Z</i>)â€octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, enhances energy metabolism by activation of TRPV1. FASEB Journal, 2017, 31, 5036-5048.	0.5	65
31	Potent PPARα Activator Derived from Tomato Juice, 13-oxo-9,11-Octadecadienoic Acid, Decreases Plasma and Hepatic Triglyceride in Obese Diabetic Mice. PLoS ONE, 2012, 7, e31317.	2.5	62
32	Tiliroside, a glycosidic flavonoid, inhibits carbohydrate digestion and glucose absorption in the gastrointestinal tract. Molecular Nutrition and Food Research, 2012, 56, 435-445.	3.3	62
33	Soymorphin-5, a soy-derived μ-opioid peptide, decreases glucose and triglyceride levels through activating adiponectin and PPARα systems in diabetic KKA ^y mice. American Journal of Physiology - Endocrinology and Metabolism, 2012, 302, E433-E440.	3.5	61
34	9â€oxoâ€10(E),12(E)â€octadecadienoic acid derived from tomato is a potent PPAR α agonist to decrease triglyceride accumulation in mouse primary hepatocytes. Molecular Nutrition and Food Research, 2011, 55, 585-593.	3.3	60
35	10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, potently activates PPARÎ ³ and stimulates adipogenesis. Biochemical and Biophysical Research Communications, 2015, 459, 597-603.	2.1	59
36	Aloe vera phytosterols act as ligands for PPAR and improve the expression levels of PPAR target genes in the livers of mice with diet-induced obesity. Obesity Research and Clinical Practice, 2011, 5, e190-e201.	1.8	56

#	Article	IF	CITATIONS
37	Identification of a Novel Hypocholesterolemic Protein, Major Royal Jelly Protein 1, Derived from Royal Jelly. PLoS ONE, 2014, 9, e105073.	2.5	55
38	Fragmented Lactic Acid Bacterial Cells Activate Peroxisome Proliferator-Activated Receptors and Ameliorate Dyslipidemia in Obese Mice. Journal of Agricultural and Food Chemistry, 2016, 64, 2549-2559.	5.2	55
39	Taurine improves obesityâ€induced inflammatory responses and modulates the unbalanced phenotype of adipose tissue macrophages. Molecular Nutrition and Food Research, 2013, 57, 2155-2165.	3.3	52
40	Activation of peroxisome proliferator-activated receptor-α (PPARα) suppresses postprandial lipidemia through fatty acid oxidation in enterocytes. Biochemical and Biophysical Research Communications, 2011, 410, 1-6.	2.1	51
41	Hypothalamic lipidâ€laden astrocytes induce microglia migration and activation. FEBS Letters, 2017, 591, 1742-1751.	2.8	51
42	Quercetin Protects Obesity-Induced Hypothalamic Inflammation by Reducing Microglia-Mediated Inflammatory Responses via HO-1 Induction. Nutrients, 2017, 9, 650.	4.1	51
43	Farnesyl pyrophosphate regulates adipocyte functions as an endogenous PPARÎ ³ agonist. Biochemical Journal, 2011, 438, 111-119.	3.7	48
44	Involvement of mast cells in adipose tissue fibrosis. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E247-E255.	3.5	48
45	The hepatokine FGF21 is crucial for peroxisome proliferator-activated receptor-α agonist-induced amelioration of metabolic disorders in obese mice. Journal of Biological Chemistry, 2017, 292, 9175-9190.	3.4	48
46	Pronounced adipogenesis and increased insulin sensitivity caused by overproduction of prostaglandin D ₂ <i>inâ€fvivo</i> . FEBS Journal, 2010, 277, 1410-1419.	4.7	46
47	Farnesol, an isoprenoid, improves metabolic abnormalities in mice via both PPARα-dependent and -independent pathways. American Journal of Physiology - Endocrinology and Metabolism, 2011, 301, E1022-E1032.	3.5	46
48	DHA attenuates postprandial hyperlipidemia via activating PPARα in intestinal epithelial cells. Journal of Lipid Research, 2013, 54, 3258-3268.	4.2	46
49	Auraptene, a citrus fruit compound, regulates gene expression as a PPARα agonist in HepG2 hepatocytes. BioFactors, 2008, 33, 25-32.	5.4	45
50	The Mevalonate Pathway Is Indispensable for Adipocyte Survival. IScience, 2018, 9, 175-191.	4.1	45
51	Natural compounds regulate energy metabolism by the modulating the activity of lipidâ€sensing nuclear receptors. Molecular Nutrition and Food Research, 2013, 57, 20-33.	3.3	44
52	Dehydroabietic acid, a diterpene, improves diabetes and hyperlipidemia in obese diabetic KKâ€Ay mice. BioFactors, 2009, 35, 442-448.	5.4	42
53	Oleuropein aglycone enhances UCP1 expression in brown adipose tissue in high-fat-diet-induced obese rats by activating β-adrenergic signaling. Journal of Nutritional Biochemistry, 2017, 40, 209-218. 	4.2	40
54	Activation of peroxisome proliferator-activated receptor- \hat{l} enhances fatty acid oxidation in human adipocytes. Biochemical and Biophysical Research Communications, 2011, 407, 818-822.	2.1	39

#	Article	IF	CITATIONS
55	Bixin Activates PPARα and Improves Obesity-Induced Abnormalities of Carbohydrate and Lipid Metabolism in Mice. Journal of Agricultural and Food Chemistry, 2012, 60, 11952-11958.	5.2	39
56	Auraptene regulates gene expression involved in lipid metabolism through PPARα activation in diabetic obese mice. Molecular Nutrition and Food Research, 2011, 55, 1791-1797.	3.3	37
57	Activation of TRPV2 negatively regulates the differentiation of mouse brown adipocytes. Pflugers Archiv European Journal of Physiology, 2016, 468, 1527-1540.	2.8	37
58	Epigallocatechin gallate changes mRNA expression level of genes involved in cholesterol metabolism in hepatocytes. British Journal of Nutrition, 2012, 107, 769-773.	2.3	36
59	4-1BB/4-1BBL Interaction Promotes Obesity-Induced Adipose Inflammation by Triggering Bidirectional Inflammatory Signaling in Adipocytes/Macrophages. Mediators of Inflammation, 2012, 2012, 1-10.	3.0	36
60	Synthesized enone fatty acids resembling metabolites from gut microbiota suppress macrophageâ€mediated inflammation in adipocytes. Molecular Nutrition and Food Research, 2017, 61, 1700064.	3.3	36
61	Metabolomics reveal 1-palmitoyl lysophosphatidylcholine production by peroxisome proliferator-activated receptor 1±. Journal of Lipid Research, 2015, 56, 254-265.	4.2	35
62	The Hypocholesterolemic Activity of Transgenic Rice Seed Accumulating Lactostatin, a Bioactive Peptide Derived from Bovine Milk β-Lactoglobulin. Journal of Agricultural and Food Chemistry, 2011, 59, 3845-3850.	5.2	33
63	Piceatannol exhibits antiâ€inflammatory effects on macrophages interacting with adipocytes. Food Science and Nutrition, 2017, 5, 76-85.	3.4	33
64	Gut Microbial Fatty Acid Metabolites Reduce Triacylglycerol Levels in Hepatocytes. Lipids, 2015, 50, 1093-1102.	1.7	32
65	Biallelic variants in <i>LIG3</i> cause a novel mitochondrial neurogastrointestinal encephalomyopathy. Brain, 2021, 144, 1451-1466.	7.6	28
66	A review of the studies on food-derived factors which regulate energy metabolism via the modulation of lipid-sensing nuclear receptors. Bioscience, Biotechnology and Biochemistry, 2019, 83, 579-588.	1.3	27
67	Soluble soy protein peptic hydrolysate stimulates adipocyte differentiation in 3T3‣1 cells. Molecular Nutrition and Food Research, 2013, 57, 1435-1445.	3.3	25
68	Endoplasmic Reticulum Stress Impaired Uncoupling Protein 1 Expression via the Suppression of Peroxisome Proliferator-Activated Receptor Î ³ Binding Activity in Mice Beige Adipocytes. International Journal of Molecular Sciences, 2019, 20, 274.	4.1	25
69	Auraptene suppresses inflammatory responses in activated <scp>RAW</scp> 264 macrophages by inhibiting p38 mitogenâ€activated protein kinase activation. Molecular Nutrition and Food Research, 2013, 57, 1135-1144.	3.3	23
70	Siphonaxanthin, a Carotenoid From Green Algae, Inhibits Lipogenesis in Hepatocytes via the Suppression of Liver X Receptor α Activity. Lipids, 2018, 53, 41-52.	1.7	23
71	Anti-obesity activity of hen egg anti-lipase immunoglobulin yolk, a novel pancreatic lipase inhibitor. Nutrition and Metabolism, 2013, 10, 70.	3.0	22
72	4â€Hydroxyderricin, as a PPARγ Agonist, Promotes Adipogenesis, Adiponectin Secretion, and Glucose Uptake in 3T3â€L1 Cells. Lipids, 2016, 51, 787-795.	1.7	22

#	Article	IF	CITATIONS
73	4â€1 <scp>BBL</scp> signaling promotes cell proliferation through reprogramming of glucose metabolism in monocytes/macrophages. FEBS Journal, 2015, 282, 1468-1480.	4.7	21
74	Xanthoangelol and 4â€hydroxyderrcin suppress obesityâ€induced inflammatory responses. Obesity, 2016, 24, 2351-2360.	3.0	21
75	Antiâ€Inflammatory and Antioxidative Properties of Isoflavones Provide Renal Protective Effects Distinct from Those of Dietary Soy Proteins against Diabetic Nephropathy. Molecular Nutrition and Food Research, 2020, 64, e2000015.	3.3	21
76	A Phytolâ€Enriched Diet Activates PPARâ€Î± in the Liver and Brown Adipose Tissue to Ameliorate Obesityâ€Induced Metabolic Abnormalities. Molecular Nutrition and Food Research, 2018, 62, e1700688.	3.3	20
77	Long-Chain Free Fatty Acid Profiling Analysis by Liquid Chromatography–Mass Spectrometry in Mouse Treated with Peroxisome Proliferator-Activated Receptor α Agonist. Bioscience, Biotechnology and Biochemistry, 2013, 77, 2288-2293.	1.3	19
78	13â€Oxoâ€9(<i>Z</i>),11(<i>E</i>),15(<i>Z</i>)â€octadecatrienoic Acid Activates Peroxisome Proliferatorâ€Activated Receptor γ in Adipocytes. Lipids, 2015, 50, 3-12.	1.7	19
79	Comparative and Stability Analyses of 9- and 13-Oxo-octadecadienoic Acids in Various Species of Tomato. Bioscience, Biotechnology and Biochemistry, 2011, 75, 1621-1624.	1.3	18
80	Over-expression of PPARα in obese mice adipose tissue improves insulin sensitivity. Biochemical and Biophysical Research Communications, 2017, 493, 108-114.	2.1	18
81	Wide-range screening of anti-inflammatory compounds in tomato using LC-MS and elucidating the mechanism of their functions. PLoS ONE, 2018, 13, e0191203.	2.5	18
82	Dehydroabietic acid activates peroxisome proliferatorâ€activated receptorâ€Î³ and stimulates insulinâ€dependent glucose uptake into 3T3â€L1 adipocytes. BioFactors, 2011, 37, 309-314.	5.4	16
83	Phenolic compounds from leaves of <i>Casimiroa edulis</i> showed adipogenesis activity. Bioscience, Biotechnology and Biochemistry, 2014, 78, 296-300.	1.3	16
84	Dietary lowâ€fat soy milk powder retards diabetic nephropathy progression via inhibition of renal fibrosis and renal inflammation. Molecular Nutrition and Food Research, 2017, 61, 1600461.	3.3	16
85	Yamogenin in fenugreek inhibits lipid accumulation through the suppression of gene expression in fatty acid synthesis in hepatocytes. Bioscience, Biotechnology and Biochemistry, 2014, 78, 1231-1236.	1.3	15
86	Glycerol kinase stimulates uncoupling protein 1 expression by regulating fatty acid metabolism in beige adipocytes. Journal of Biological Chemistry, 2020, 295, 7033-7045.	3.4	15
87	Tetrahydrobiopterin activates brown adipose tissue and regulates systemic energy metabolism. JCI Insight, 2017, 2, .	5.0	15
88	Double dioxygenation by mouse 8S-lipoxygenase: Specific formation of a potent peroxisome proliferator-activated receptor α agonist. Biochemical and Biophysical Research Communications, 2005, 338, 136-143.	2.1	14
89	Blockade of 4-1BB and 4-1BBL Interaction Reduces Obesity-Induced Skeletal Muscle Inflammation. Mediators of Inflammation, 2013, 2013, 1-10.	3.0	14
90	Dietary factors evoke thermogenesis in adipose tissues. Obesity Research and Clinical Practice, 2014, 8, e533-e539.	1.8	14

#	Article	IF	CITATIONS
91	Development of a novel transgenic rice with hypocholesterolemic activity via high-level accumulation of the α′ subunit of soybean β-conglycinin. Transgenic Research, 2014, 23, 609-620.	2.4	14
92	9â€Oxoâ€10(<i>E</i>),12(<i>Z</i>),15(<i>Z</i>)â€Octadecatrienoic Acid Activates Peroxisome Proliferatorâ€Activated Receptor α in Hepatocytes. Lipids, 2015, 50, 1083-1091.	1.7	14
93	β-Cryptoxanthin Induces UCP-1 Expression via a RAR Pathway in Adipose Tissue. Journal of Agricultural and Food Chemistry, 2019, 67, 10595-10603.	5.2	14
94	The dipeptidyl peptidaseâ€4 (<scp>DPP</scp> â€4) inhibitor teneligliptin enhances brown adipose tissue function, thereby preventing obesity in mice. FEBS Open Bio, 2018, 8, 1782-1793.	2.3	13
95	Dill seed extract improves abnormalities in lipid metabolism through peroxisome proliferatorâ€activated receptorâ€Î± (<scp>PPAR</scp> â€Î±) activation in diabetic obese mice. Molecular Nutrition and Food Research, 2013, 57, 1295-1299.	3.3	12
96	Theobromine enhances absorption of cacao polyphenol in rats. Bioscience, Biotechnology and Biochemistry, 2014, 78, 2059-2063.	1.3	11
97	Geranylgeranyl pyrophosphate performs as an endogenous regulator of adipocyte function via suppressing the LXR pathway. Biochemical and Biophysical Research Communications, 2016, 478, 1317-1322.	2.1	11
98	Suksdorfin Promotes Adipocyte Differentiation and Improves Abnormalities in Glucose Metabolism via PPARÎ ³ Activation. Lipids, 2017, 52, 657-664.	1.7	11
99	Apo-12′-lycopenal, a Lycopene Metabolite, Promotes Adipocyte Differentiation via Peroxisome Proliferator-Activated Receptor γ Activation. Journal of Agricultural and Food Chemistry, 2018, 66, 13152-13161.	5.2	11
100	Genome Science of Lipid Metabolism and Obesity. Forum of Nutrition, 2009, 61, 25-38.	3.7	10
101	Development of a Novel PPARÎ ³ Ligand Screening System Using Pinpoint Fluorescence-Probed Protein. Bioscience, Biotechnology and Biochemistry, 2011, 75, 337-341.	1.3	10
102	Rice Koji Extract Enhances Lipid Metabolism through Peroxisome Proliferator-Activated Receptor Alpha (PPARα) Activation in Mouse Liver. Journal of Agricultural and Food Chemistry, 2016, 64, 8848-8856.	5.2	10
103	<scp>l</scp> â€Ornithine and <scp>l</scp> â€lysine stimulate gastrointestinal motility via transient receptor potential vanilloid 1. Molecular Nutrition and Food Research, 2017, 61, 1700230.	3.3	10
104	The involvement of 4â€1 BB /4â€1 BBL signaling in glial cellâ€mediated hypothalamic inflammation in obesity. FEBS Open Bio, 2018, 8, 843-853.	2.3	10
105	β-adrenergic Receptor Stimulation Revealed a Novel Regulatory Pathway via Suppressing Histone Deacetylase 3 to Induce Uncoupling Protein 1 Expression in Mice Beige Adipocyte. International Journal of Molecular Sciences, 2018, 19, 2436.	4.1	10
106	Activation of peroxisome proliferator-activated receptor-α (PPARα) in proximal intestine improves postprandial lipidemia in obese diabetic KK-Ay mice. Obesity Research and Clinical Practice, 2013, 7, e353-e360.	1.8	9
107	Tomato extract suppresses the production of proinflammatory mediators induced by interaction between adipocytes and macrophages. Bioscience, Biotechnology and Biochemistry, 2015, 79, 82-87.	1.3	9
108	Long non-coding RNA 2310069B03Rik functions as a suppressor of Ucp1 expression under prolonged cold exposure in murine beige adipocytes. Bioscience, Biotechnology and Biochemistry, 2020, 84, 305-313.	1.3	9

#	Article	IF	CITATIONS
109	A new mouse model for noninvasive fluorescenceâ€based monitoring of mitochondrial <scp>UCP</scp> 1 expression. FEBS Letters, 2019, 593, 1201-1212.	2.8	8
110	Investigating Anti-Obesity Effects by Oral Administration of <i>Aloe vera</i> Gel Extract (AVGE): Possible Involvement in Activation of Brown Adipose Tissue (BAT). Journal of Nutritional Science and Vitaminology, 2020, 66, 176-184.	0.6	7
111	Metabolome analysis revealed that soybean–Aspergillus oryzae interaction induced dynamic metabolic and daidzein prenylation changes. PLoS ONE, 2021, 16, e0254190.	2.5	7
112	Dietary regulation of nuclear receptors in obesity-related metabolic syndrome. Asia Pacific Journal of Clinical Nutrition, 2008, 17 Suppl 1, 126-30.	0.4	7
113	A Method for the Simultaneous Determination of 3T3-L1 Adipocyte Metabolites by Liquid Chromatography/Mass Spectrometry Using [¹³ C]-stable Isotopes. Bioscience, Biotechnology and Biochemistry, 2011, 75, 1485-1489.	1.3	6
114	Localization of 9- and 13-oxo-octadecadienoic acids in tomato fruit. Bioscience, Biotechnology and Biochemistry, 2014, 78, 1761-1764.	1.3	6
115	An Efficient Purification Method for Quantitative Determinations of Protodioscin, Dioscin and Diosgenin in Plasma of Fenugreek-Fed Mice. Journal of Nutritional Science and Vitaminology, 2015, 61, 465-470.	0.6	5
116	Stiffness of the extracellular matrix regulates differentiation into beige adipocytes. Biochemical and Biophysical Research Communications, 2020, 532, 205-210.	2.1	5
117	Filbertone Protects Obesity-induced Hypothalamic Inflammation by Reduction of Microglia-mediated Inflammatory Responses. Biotechnology and Bioprocess Engineering, 2021, 26, 86-92.	2.6	5
118	Involvement of mechano-sensitive Piezo1 channel in the differentiation of brown adipocytes. Journal of Physiological Sciences, 2022, 72, .	2.1	5
119	Comparative Analysis of the Preventive Effects of Canagliflozin, a Sodium-Glucose Co-Transporter-2 Inhibitor, on Body Weight Gain Between Oral Gavage and Dietary Administration by Focusing on Fatty Acid Metabolism. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2020, Volume 13, 4353-4359	2.4	4
120	Soy hydrolysate enhances the isoproterenol-stimulated lipolytic pathway through an increase in β-adrenergic receptor expression in adipocytes. Bioscience, Biotechnology and Biochemistry, 2019, 83, 1782-1789.	1.3	3
121	Loss of CREB Coactivator CRTC1 in SF1 Cells Leads to Hyperphagia and Obesity by High-fat Diet But Not Normal Chow Diet. Endocrinology, 2021, 162, .	2.8	3
122	Capsaicin inhibits the production of tumor necrosis factor α by LPS-stimulated murine macrophages, RAW 264.7: a PPARγ ligand-like action as a novel mechanism [FEBS Letters 572 (2004) 266-270]. FEBS Letters, 2004, 575, 141-141.	2.8	2
123	Anin VitroAnalysis System Using a Fluorescence Protein Reporter for Evaluating Anti-Inflammatory Effects in Macrophages. Bioscience, Biotechnology and Biochemistry, 2011, 75, 1582-1587.	1.3	2
124	Food Components Modulate Obesity and Energy Metabolism via the Transcriptional Regulation of Lipid-Sensing Nuclear Receptors. Journal of Nutritional Science and Vitaminology, 2015, 61, S128-S130.	0.6	2
125	Correction to Rice Koji Extract Enhances Lipid Metabolism through Peroxisome Proliferator-Activated Receptor Alpha (PPARα) Activation in Mouse Liver. Journal of Agricultural and Food Chemistry, 2017, 65, 251-251.	5.2	2
126	Food Intake and Thermogenesis in Adipose Tissue. The Korean Journal of Obesity, 2016, 25, 109-114.	0.2	2

#	Article	IF	CITATIONS
127	Screening of flavor compounds using <i>Ucp1</i> -luciferase reporter beige adipocytes identified 5-methylquinoxaline as a novel UCP1-inducing compound. Bioscience, Biotechnology and Biochemistry, 2022, 86, 380-389.	1.3	2
128	Absence of 4-1BB reduces obesity-induced atrophic response in skeletal muscle. Journal of Inflammation, 2017, 14, 9.	3.4	1
129	Lactobacillus helveticus-MIKI-020 enhances hepatic FGF21 expression and decreases the core body temperature during sleep in mice. Journal of Functional Foods, 2019, 54, 529-535.	3.4	1
130	Methylglyoxal attenuates isoproterenol-induced increase in uncoupling protein 1 expression through activation of JNK signaling pathway in beige adipocytes. Biochemistry and Biophysics Reports, 2021, 28, 101127.	1.3	1
131	Disruption of CRTC1 and CRTC2 in Sim1 cells strongly increases high-fat diet intake in female mice but has a modest impact on male mice. PLoS ONE, 2022, 17, e0262577.	2.5	1
132	Integration of bioassay and non-target metabolite analysis of tomato reveals that β-carotene and lycopene activate the adiponectin signaling pathway, including AMPK phosphorylation. PLoS ONE, 2022, 17, e0267248.	2.5	1
133	Isoprenols. , 0, , 301-310.		0
134	Regulation of Brown Adipose Tissue Function via Metabolites Derived from Diet by Gut Microbiota. Oleoscience, 2019, 19, 145-152.	0.0	0
135	Obesity and Nuclear Receptors: Effective Genomic Strategies in Functional Foods. , 0, , 47-58.		0
136	An orally active plant Rubisco-derived peptide increases neuronal leptin responsiveness. Scientific Reports, 2022, 12, .	3.3	0