
Michael J Keenan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7795043/publications.pdf Version: 2024-02-01

MICHAEL I KEENAN

#	Article	IF	CITATIONS
1	Resistant starch type 2 and whole grain maize flours enrich different intestinal bacteria and metatranscriptomes. Journal of Functional Foods, 2022, 90, 104982.	3.4	4
2	Gut Microbiota Composition and Predicted Microbial Metabolic Pathways of Obesity Prone and Obesity Resistant Outbred Sprague-Dawley CD Rats May Account for Differences in Their Phenotype. Frontiers in Nutrition, 2021, 8, 746515.	3.7	14
3	Novel Resistant Starch Type 4 Products of Different Starch Origins, Production Methods, and Amounts Are Not Equally Fermented when Fed to Spragueâ€Dawley Rats. Molecular Nutrition and Food Research, 2020, 64, 1900901.	3.3	8
4	Differences in Capacity of High-Amylose Resistant Starch, Whole-Grain Flour, and a Combination of Both to Modify Intestinal Responses of Male Sprague Dawley Rats Fed Moderate and High Fat Diets. Journal of Agricultural and Food Chemistry, 2020, 68, 15176-15185.	5.2	3
5	Abundance of the species Clostridium butyricum in the gut microbiota contributes to differences in obesity phenotype in outbred Sprague-Dawley CD rats. Nutrition, 2020, 78, 110893.	2.4	15
6	Conserved and variable responses of the gut microbiome to resistant starch type 2. Nutrition Research, 2020, 77, 12-28.	2.9	57
7	CD Obesityâ€Prone Rats, but not Obesityâ€Resistant Rats, Robustly Ferment Resistant Starch Without Increased Weight or Fat Accretion. Obesity, 2018, 26, 570-577.	3.0	26
8	Role of resistant starch on diabetes risk factors in people with prediabetes: Design, conduct, and baseline results of the STARCH trial. Contemporary Clinical Trials, 2018, 65, 99-108.	1.8	24
9	Effect of 12 wk of resistant starch supplementation on cardiometabolic risk factors in adults with prediabetes: a randomized controlled trial. American Journal of Clinical Nutrition, 2018, 108, 492-501.	4.7	54
10	Obese ZDF rats fermented resistant starch with effects on gut microbiota but no reduction in abdominal fat. Molecular Nutrition and Food Research, 2017, 61, 1501025.	3.3	35
11	Misleading conclusions on effects of resistant starch due to inappropriate formulation of controls, inadequate statistical power, and anomalies in the in vitro methods. American Journal of Clinical Nutrition, 2017, 105, 1248-1249.	4.7	0
12	Simultaneous delivery of antibiotics neomycin and ampicillin in drinking water inhibits fermentation of resistant starch in rats. Molecular Nutrition and Food Research, 2017, 61, 1600609.	3.3	12
13	Mice Fed a High-Fat Diet Supplemented with Resistant Starch Display Marked Shifts in the Liver Metabolome Concurrent with Altered Gut Bacteria. Journal of Nutrition, 2016, 146, 2476-2490.	2.9	44
14	Obese Mice Fed a Diet Supplemented with Enzyme-Treated Wheat Bran Display Marked Shifts in the Liver Metabolome Concurrent with Altered Gut Bacteria. Journal of Nutrition, 2016, 146, 2445-2460.	2.9	16
15	The importance of GLPâ€1 and PYY in resistant starch's effect on body fat in mice. Molecular Nutrition and Food Research, 2015, 59, 1000-1003.	3.3	41
16	Oat consumption reduced intestinal fat deposition and improved health span in Caenorhabditis elegans model. Nutrition Research, 2015, 35, 834-843.	2.9	23
17	Role of Resistant Starch in Improving Gut Health, Adiposity, and Insulin Resistance. Advances in Nutrition, 2015, 6, 198-205.	6.4	194
18	Improving healthspan via changes in gut microbiota and fermentation. Age, 2015, 37, 98.	3.0	33

Michael J Keenan

#	Article	IF	CITATIONS
19	Prowashonupana barley dietary fibre reduces body fat and increases insulin sensitivity in Caenorhabditis elegans model. Journal of Functional Foods, 2015, 18, 564-574.	3.4	14
20	Induction of Energy Expenditure by Sitagliptin Is Dependent on GLP-1 Receptor. PLoS ONE, 2015, 10, e0126177.	2.5	15
21	Resistant starch from high amylose maize (HAM-RS2) and Dietary butyrate reduce abdominal fat by a different apparent mechanism. Obesity, 2014, 22, 344-348.	3.0	51
22	Resistant starch from high amylose maize (HAMâ€RS2) reduces body fat and increases gut bacteria in ovariectomized (OVX) rats. Obesity, 2013, 21, 981-984.	3.0	46
23	Dietary resistant starch improves selected brain and behavioral functions in adult and aged rodents. Molecular Nutrition and Food Research, 2013, 57, 2071-2074.	3.3	8
24	High fat diet partially attenuates fermentation responses in rats fed resistant starch from high-amylose maize. Obesity, 2013, 21, 2350-2355.	3.0	49
25	High-Amylose Resistant Starch Increases Hormones and Improves Structure and Function of the Gastrointestinal Tract: A Microarray Study. Journal of Nutrigenetics and Nutrigenomics, 2012, 5, 26-44.	1.3	44
26	Tolerance, fermentation, and cytokine expression in healthy aged male C57BL/6J mice fed resistant starch. Molecular Nutrition and Food Research, 2012, 56, 515-518.	3.3	17
27	Two prebiotics are effective in promoting fermentation in rats fed a high fat diet. FASEB Journal, 2012, 26, 830.9.	0.5	Ο
28	Dietaryâ€resistant starch improves maternal glycemic control in Goto–Kakizaki rat. Molecular Nutrition and Food Research, 2011, 55, 1499-1508.	3.3	74
29	Dietary Resistant Starch Increases Hypothalamic POMC Expression in Rats. Obesity, 2009, 17, 40-45.	3.0	68
30	Comparative Methodologies for Measuring Metabolizable Energy of Various Types of Resistant High Amylose Corn Starch. Journal of Agricultural and Food Chemistry, 2009, 57, 8474-8479.	5.2	22
31	Failure to Ferment Dietary Resistant Starch in Specific Mouse Models of Obesity Results in No Body Fat Loss. Journal of Agricultural and Food Chemistry, 2009, 57, 8844-8851.	5.2	47
32	Molecular Characterization of Gut Microâ€flora of Mice Fed Dietary Resistant Starch. FASEB Journal, 2009, 23, 919.7.	0.5	1
33	Dietary resistant starch upregulates total GLP-1 and PYY in a sustained day-long manner through fermentation in rodents. American Journal of Physiology - Endocrinology and Metabolism, 2008, 295, E1160-E1166.	3.5	359
34	Feeding resistant starch maintains elevated plasma levels of GLPâ€1 and PYY throughout the day and is associated with decreased body fat in rats. FASEB Journal, 2007, 21, A158.	0.5	1
35	Feeding resistant starch to rats alters expression of the cecal cell genome compared to control groups. FASEB Journal, 2007, 21, A364.	0.5	Ο
36	Resistant starch in a high fat diet produces signaling from the gut, but not reduced body fat. FASEB Journal, 2007, 21, A364.	0.5	0

MICHAEL J KEENAN

#	Article	IF	CITATIONS
37	Effects of Resistant Starch, A Nonâ€digestible Fermentable Fiber, on Reducing Body Fat. Obesity, 2006, 14, 1523-1534.	3.0	255
38	Peptide YY and Proglucagon mRNA Expression Patterns and Regulation in the Gut. Obesity, 2006, 14, 683-689.	3.0	154
39	Resistant starch and fructooligosaccharide improve gut histology and alter gut signaling in rats. FASEB Journal, 2006, 20, A182.	0.5	Ο
40	Resistant starch reduces abdominal fat more than energy dilution with nonfermentable fiber. FASEB Journal, 2006, 20, A182.	0.5	0
41	Adult Female Rats Defend "Appropriate―Energy Intake after Adaptation to Dietary Energy. Obesity, 2003, 11, 1214-1222.	4.0	14
42	Comparison of Bone Density Measurement Techniques: DXA and Archimedes' Principle. Journal of Bone and Mineral Research, 1997, 12, 1903-1907.	2.8	69