
Thorsten Maretzky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7794900/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CD4 expression in effector T cells depends on DNA demethylation over a developmentally established stimulus-responsive element. Nature Communications, 2022, 13, 1477.	12.8	4
2	Targeting the endo-lysosomal autophagy pathway to treat inflammatory bowel diseases. Journal of Autoimmunity, 2022, 128, 102814.	6.5	11
3	Targeted truncation of the ADAM17 cytoplasmic domain in mice results in protein destabilization and a hypomorphic phenotype. Journal of Biological Chemistry, 2021, 296, 100733.	3.4	9
4	Analysis of the Conditions That Affect the Selective Processing of Endogenous Notch1 by ADAM10 and ADAM17. International Journal of Molecular Sciences, 2021, 22, 1846.	4.1	10
5	Members of the Fibroblast Growth Factor Receptor Superfamily Are Proteolytically Cleaved by Two Differently Activated Metalloproteases. International Journal of Molecular Sciences, 2021, 22, 3165.	4.1	8
6	Advantages of Tyrosine Kinase Anti-Angiogenic Cediranib over Bevacizumab: Cell Cycle Abrogation and Synergy with Chemotherapy. Pharmaceuticals, 2021, 14, 682.	3.8	8
7	A Disintegrin and Metalloproteases (ADAMs): Activation, Regulation and Mechanisms of Catalysis. International Journal of Molecular Sciences, 2021, 22, 8762.	4.1	1
8	The Role of iRhom2 in Metabolic and Cardiovascular-Related Disorders. Frontiers in Cardiovascular Medicine, 2020, 7, 612808.	2.4	8
9	ADAM17 stabilizes its interacting partner inactive Rhomboid 2 (iRhom2) but not inactive Rhomboid 1 (iRhom1). Journal of Biological Chemistry, 2020, 295, 4350-4358.	3.4	12
10	Substrateâ€selective protein ectodomain shedding by ADAM17 and iRhom2 depends on their juxtamembrane and transmembrane domains. FASEB Journal, 2020, 34, 4956-4969.	0.5	22
11	Loss of iRhom2 accelerates fat gain and insulin resistance in diet-induced obesity despite reduced adipose tissue inflammation. Metabolism: Clinical and Experimental, 2020, 106, 154194.	3.4	18
12	The Threshold Effect: Lipopolysaccharide-Induced Inflammatory Responses in Primary Macrophages Are Differentially Regulated in an iRhom2-Dependent Manner. Frontiers in Cellular and Infection Microbiology, 2020, 10, 620392.	3.9	1
13	Novel functions of inactive rhomboid proteins in immunity and disease. Journal of Leukocyte Biology, 2019, 106, 823-835.	3.3	19
14	Loss of RHBDF2 results in an early-onset spontaneous murine colitis. Journal of Leukocyte Biology, 2019, 105, 767-781.	3.3	26
15	Macrocyclic Î,-defensins suppress tumor necrosis factor-α (TNF-α) shedding by inhibition of TNF-α–converting enzyme. Journal of Biological Chemistry, 2018, 293, 2725-2734.	3.4	28
16	The xenoestrogens biphenolâ€A and nonylphenol differentially regulate metalloproteaseâ€mediated shedding of EGFR ligands. Journal of Cellular Physiology, 2018, 233, 2247-2256.	4.1	16
17	Structural modeling defines transmembrane residues in ADAM17 that are crucial for Rhbdf2/ADAM17-dependent proteolysis. Journal of Cell Science, 2017, 130, 868-878.	2.0	34
18	Characterization of the catalytic properties of the membrane-anchored metalloproteinase ADAM9 in cell-based assays. Biochemical Journal, 2017, 474, 1467-1479.	3.7	16

THORSTEN MARETZKY

#	Article	IF	CITATIONS
19	iRhom2 regulates CSF1R cell surface expression and nonâ€steady state myelopoiesis in mice. European Journal of Immunology, 2016, 46, 2737-2748.	2.9	14
20	Phosphatidylserine exposure is required for ADAM17 sheddase function. Nature Communications, 2016, 7, 11523.	12.8	134
21	The Functional Maturation of A Disintegrin and Metalloproteinase (ADAM) 9, 10, and 17 Requires Processing at a Newly Identified Proprotein Convertase (PC) Cleavage Site. Journal of Biological Chemistry, 2015, 290, 12135-12146.	3.4	59
22	The Cytoplasmic Domain of A Disintegrin and Metalloproteinase 10 (ADAM10) Regulates Its Constitutive Activity but Is Dispensable for Stimulated ADAM10-dependent Shedding. Journal of Biological Chemistry, 2015, 290, 7416-7425.	3.4	34
23	iRhoms 1 and 2 are essential upstream regulators of ADAM17-dependent EGFR signaling. Proceedings of the United States of America, 2015, 112, 6080-6085.	7.1	121
24	Deletions in the cytoplasmic domain of iRhom1 and iRhom2 promote shedding of the TNF receptor by the protease ADAM17. Science Signaling, 2015, 8, ra109.	3.6	60
25	Characterization of Oxygen-Induced Retinopathy in Mice Carrying an Inactivating Point Mutation in the Catalytic Site of ADAM15. Investigative Ophthalmology and Visual Science, 2014, 55, 6774-6782.	3.3	10
26	Phytochemicals Perturb Membranes and Promiscuously Alter Protein Function. ACS Chemical Biology, 2014, 9, 1788-1798.	3.4	241
27	iRhom2 controls the substrate selectivity of stimulated ADAM17-dependent ectodomain shedding. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11433-11438.	7.1	138
28	ADAM17 Controls Endochondral Ossification by Regulating Terminal Differentiation of Chondrocytes. Molecular and Cellular Biology, 2013, 33, 3077-3090.	2.3	47
29	iRHOM2 is a critical pathogenic mediator of inflammatory arthritis. Journal of Clinical Investigation, 2013, 123, 928-32.	8.2	129
30	iRhom2 Regulation of TACE Controls TNF-Mediated Protection Against <i>Listeria</i> and Responses to LPS. Science, 2012, 335, 229-232.	12.6	292
31	A transforming Src mutant increases the bioavailability of EGFR ligands via stimulation of the cell-surface metalloproteinase ADAM17. Oncogene, 2011, 30, 611-618.	5.9	55
32	Migration of growth factor-stimulated epithelial and endothelial cells depends on EGFR transactivation by ADAM17. Nature Communications, 2011, 2, 229.	12.8	128
33	ADAM17 is regulated by a rapid and reversible mechanism that controls access to its catalytic site. Journal of Cell Science, 2010, 123, 3913-3922.	2.0	165
34	Src Stimulates Fibroblast Growth Factor Receptor-2 Shedding by an ADAM15 Splice Variant Linked to Breast Cancer. Cancer Research, 2009, 69, 4573-4576.	0.9	30
35	Characterization of the catalytic activity of the membrane-anchored metalloproteinase ADAM15 in cell-based assays. Biochemical Journal, 2009, 420, 105-113.	3.7	48
36	ADAM10-Mediated E-Cadherin Release Is Regulated by Proinflammatory Cytokines and Modulates Keratinocyte Cohesion in Eczematous Dermatitis. Journal of Investigative Dermatology, 2008, 128, 1737-1746.	0.7	79

THORSTEN MARETZKY

#	Article	IF	CITATIONS
37	ADAM10 Regulates Endothelial Permeability and T-Cell Transmigration by Proteolysis of Vascular Endothelial Cadherin. Circulation Research, 2008, 102, 1192-1201.	4.5	264
38	ADAM10 regulates FasL cell surface expression and modulates FasL-induced cytotoxicity and activation-induced cell death. Cell Death and Differentiation, 2007, 14, 1040-1049.	11.2	165
39	Regulated ADAM10-dependent Ectodomain Shedding of γ-Protocadherin C3 Modulates Cell-Cell Adhesion. Journal of Biological Chemistry, 2006, 281, 21735-21744.	3.4	94
40	ADAM10 cleavage of N-cadherin and regulation of cell–cell adhesion and β-catenin nuclear signalling. EMBO Journal, 2005, 24, 742-752.	7.8	438
41	ADAM10 mediates E-cadherin shedding and regulates epithelial cell-cell adhesion, migration, and β-catenin translocation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9182-9187.	7.1	604
42	L1 Is Sequentially Processed by Two Differently Activated Metalloproteases and Presenilin/γ-Secretase and Regulates Neural Cell Adhesion, Cell Migration, and Neurite Outgrowth. Molecular and Cellular Biology, 2005, 25, 9040-9053.	2.3	212