
Marek OrÅ, owski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7794728/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metal Ions Induce Liquid Condensate Formation by the F Domain of Aedes aegypti Ecdysteroid Receptor. New Perspectives of Nuclear Receptor Studies. Cells, 2021, 10, 571.	1.8	4
2	Nuclear immunophilin FKBP39 from Drosophila melanogaster drives spontaneous liquid-liquid phase separation. International Journal of Biological Macromolecules, 2020, 163, 108-119.	3.6	3
3	Copper(II)-Binding Induces a Unique Polyproline Type II Helical Structure within the Ion-Binding Segment in the Intrinsically Disordered F-Domain of Ecdysteroid Receptor from <i>Aedes aegypti</i> . Inorganic Chemistry, 2019, 58, 11782-11792.	1.9	3
4	The intrinsically disordered C-terminal F domain of the ecdysteroid receptor from Aedes aegypti exhibits metal ion-binding ability. Journal of Steroid Biochemistry and Molecular Biology, 2019, 186, 42-55.	1.2	7
5	Molecular determinants of <i>Drosophila</i> immunophilin FKBP39 nuclear localization. Biological Chemistry, 2018, 399, 467-484.	1.2	6
6	Intrinsically disordered N-terminal domain of the Helicoverpa armigera Ultraspiracle stabilizes the dimeric form via a scorpion-like structure. Journal of Steroid Biochemistry and Molecular Biology, 2018, 183, 167-183.	1.2	5
7	Nucleoplasmin-like domain of FKBP39 from Drosophila melanogaster forms a tetramer with partly disordered tentacle-like C-terminal segments. Scientific Reports, 2017, 7, 40405.	1.6	7
8	Structural Analyses of Ordered and Disordered Regions in Ecdysteroid Receptor. , 2015, , 93-117.		0
9	The Molecular Basis of Conformational Instability of the Ecdysone Receptor DNA Binding Domain Studied by In Silico and In Vitro Experiments. PLoS ONE, 2014, 9, e86052.	1.1	2
10	Homodimerization propensity of the intrinsically disordered N-terminal domain of Ultraspiracle from Aedes aegypti. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 1153-1166.	1.1	21
11	Multidomain sumoylation of the ecdysone receptor (EcR) from Drosophila melanogaster. Journal of Steroid Biochemistry and Molecular Biology, 2013, 138, 162-173.	1.2	7
12	Conformational changes in the DNA-binding domains of the ecdysteroid receptor during the formation of a complex with the <i>hsp27</i> response element. Journal of Biomolecular Structure and Dynamics, 2012, 30, 379-393.	2.0	5
13	The composite nature of the interaction between nuclear receptors EcR and DHR38. Biological Chemistry, 2012, 393, 457-471.	1.2	10
14	Sequences that direct subcellular traffic of the Drosophila methoprene-tolerant protein (MET) are located predominantly in the PAS domains. Molecular and Cellular Endocrinology, 2011, 345, 16-26.	1.6	22
15	The variety of complexes formed by EcR and Usp nuclear receptors in the nuclei of living cells. Molecular and Cellular Endocrinology, 2008, 294, 45-51.	1.6	12
16	Regulatory elements in the juvenile hormone binding protein gene from Galleria mellonella — Topography of binding sites for Usp and EcRDBD. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2008, 1779, 390-401.	0.9	11
17	Novel DNA-binding element within the C-terminal extension of the nuclear receptor DNA-binding domain. Nucleic Acids Research, 2007, 35, 2705-2718.	6.5	36
18	EcR and Usp, components of the ecdysteroid nuclear receptor complex, exhibit differential distribution of molecular determinants directing subcellular trafficking. Cellular Signalling, 2007, 19, 490-503.	1.7	35

#	Article	IF	CITATIONS
19	The DNA-Binding Domain of the Ultraspiracle Drives Deformation of the Response Element Whereas the DNA-Binding Domain of the Ecdysone Receptor Is Responsible for a Slight Additional Change of the Preformed Structureâ€. Biochemistry, 2006, 45, 668-675.	1.2	9
20	Plasticity of the Ecdysone Receptor DNA Binding Domain. Molecular Endocrinology, 2004, 18, 2166-2184.	3.7	26