Bettina M Nestl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7794713/publications.pdf

Version: 2024-02-01

68 papers 2,506 citations

201674 27 h-index 206112 48 g-index

78 all docs 78 docs citations

78 times ranked 2262 citing authors

#	Article	IF	CITATIONS
1	New Generation of Biocatalysts for Organic Synthesis. Angewandte Chemie - International Edition, 2014, 53, 3070-3095.	13.8	282
2	Recent progress in industrial biocatalysis. Current Opinion in Chemical Biology, 2011, 15, 187-193.	6.1	184
3	Engineering of Flexible Loops in Enzymes. ACS Catalysis, 2014, 4, 3201-3211.	11.2	132
4	Enzyme Toolbox: Novel Enantiocomplementary Imine Reductases. ChemBioChem, 2014, 15, 2201-2204.	2.6	98
5	Imine Reductaseâ€Catalyzed Intermolecular Reductive Amination of Aldehydes and Ketones. ChemCatChem, 2015, 7, 3239-3242.	3.7	96
6	Bacterial CYP153A monooxygenases for the synthesis of omega-hydroxylated fatty acids. Chemical Communications, 2012, 48, 5115.	4.1	92
7	Synthesis of ï‰â€hydroxy dodecanoic acid based on an engineered <scp>CYP153A</scp> fusion construct. Microbial Biotechnology, 2013, 6, 694-707.	4.2	83
8	Squalene hopene cyclases are protonases for stereoselective ${\rm Br} \tilde{\rm A}_{_{\!4}}$ nsted acid catalysis. Nature Chemical Biology, 2015, 11, 121-126.	8.0	83
9	Regioselective ω-hydroxylation of medium-chain n-alkanes and primary alcohols by CYP153 enzymes from Mycobacterium marinum and Polaromonas sp. strain JS666. Organic and Biomolecular Chemistry, 2011, 9, 6727.	2.8	82
10	Squalene hopene cyclases: highly promiscuous and evolvable catalysts for stereoselective C C and C X bond formation. Current Opinion in Chemical Biology, 2013, 17, 293-300.	6.1	65
11	Recent advances in imine reductase-catalyzed reactions. World Journal of Microbiology and Biotechnology, 2017, 33, 199.	3.6	61
12	Engineering Rieske Non-Heme Iron Oxygenases for the Asymmetric Dihydroxylation of Alkenes. Angewandte Chemie - International Edition, 2015, 54, 12952-12956.	13.8	56
13	Asymmetric Ketone Reduction by Imine Reductases. ChemBioChem, 2017, 18, 253-256.	2.6	50
14	Asymmetric Enzymatic Hydration of Unactivated, Aliphatic Alkenes. Angewandte Chemie - International Edition, 2019, 58, 173-177.	13.8	49
15	Synthesis of Heterocyclic Terpenoids by Promiscuous Squalene–Hopene Cyclases. ChemBioChem, 2013, 14, 436-439.	2.6	47
16	Squalene-hopene cyclasesâ€"evolution, dynamics and catalytic scope. Current Opinion in Structural Biology, 2016, 41, 73-82.	5.7	40
17	Variations in the stability of NCR ene reductase by rational enzyme loop modulation. Journal of Structural Biology, 2014, 185, 228-233.	2.8	38
18	Emulation of Racemase Activity by Employing a Pair of Stereocomplementary Biocatalysts. Chemistry - A European Journal, 2007, 13, 8271-8276.	3.3	37

#	Article	IF	Citations
19	Identification of imine reductaseâ€specific sequence motifs. Proteins: Structure, Function and Bioinformatics, 2016, 84, 600-610.	2.6	36
20	Biocatalytic Racemization of Aliphatic, Arylaliphatic, and Aromatic \hat{l}_{\pm} -Hydroxycarboxylic Acids. Journal of Organic Chemistry, 2005, 70, 4028-4032.	3.2	33
21	Crystal Structure Determination and Mutagenesis Analysis of the Ene Reductase NCR. ChemBioChem, 2012, 13, 2400-2407.	2.6	33
22	New imine-reducing enzymes from $\langle i \rangle \hat{l}^2 \langle i \rangle$ -hydroxyacid dehydrogenases by single amino acid substitutions. Protein Engineering, Design and Selection, 2018, 31, 109-120.	2.1	33
23	Synthesis of 9â€Oxononanoic Acid, a Precursor for Biopolymers. ChemSusChem, 2013, 6, 2149-2156.	6.8	32
24	Biocatalytic approaches for the quantitative production of single stereoisomers from racemates. Biochemical Society Transactions, 2006, 34, 296.	3.4	31
25	Stereoselective Friedel–Crafts alkylation catalyzed by squalene hopene cyclases. Tetrahedron, 2012, 68, 7624-7629.	1.9	31
26	Structural and functional insights into asymmetric enzymatic dehydration of alkenols. Nature Chemical Biology, 2017, 13, 275-281.	8.0	30
27	Optimized Reaction Conditions Enable the Hydration of Nonâ€natural Substrates by the Oleate Hydratase from <i>Elizabethkingia meningoseptica</i>). ChemCatChem, 2017, 9, 758-766.	3.7	30
28	Powering Artificial Enzymatic Cascades with Electrical Energy. Angewandte Chemie - International Edition, 2020, 59, 10929-10933.	13.8	29
29	Biocatalytic Access to Piperazines from Diamines and Dicarbonyls. ACS Catalysis, 2018, 8, 3727-3732.	11.2	28
30	Wholeâ€Cell Oneâ€Pot Biosynthesis of Azelaic Acid. ChemCatChem, 2014, 6, 1003-1009.	3.7	27
31	Switching the Cofactor Specificity of an Imine Reductase. ChemCatChem, 2018, 10, 183-187.	3.7	27
32	Selectivity in the Cyclization of Citronellal Introduced by Squalene Hopene Cyclase Variants. ChemCatChem, 2017, 9, 4364-4368.	3.7	24
33	H ₂ -driven biotransformation of n-octane to 1-octanol by a recombinant Pseudomonas putida strain co-synthesizing an O ₂ -tolerant hydrogenase and a P450 monooxygenase. Chemical Communications, 2015, 51, 16173-16175.	4.1	23
34	Semirational Engineering of the Naphthalene Dioxygenase from <i>Pseudomonas</i> sp. NCIB 9816â€4 towards Selective Asymmetric Dihydroxylation. ChemCatChem, 2018, 10, 178-182.	3.7	22
35	Biocatalytic Racemization of (Hetero)Aryl-aliphatic α-Hydroxycarboxylic Acids byLactobacillus spp. Proceeds via an Oxidation–Reduction Sequence. European Journal of Organic Chemistry, 2006, 2006, 4573-4577.	2.4	21
36	Synthesis of N-heterocycles from diamines via H2-driven NADPH recycling in the presence of O2. Green Chemistry, 2019, 21, 1396-1400.	9.0	20

#	Article	lF	Citations
37	Hydrolysis of Hydrophobic Esters in a Bicontinuous Microemulsion Catalysed by Lipaseâ€B from ⟨i⟩Candida antarctica⟨ i⟩. Chemistry - A European Journal, 2015, 21, 2691-2700.	3.3	19
38	Loopâ€Grafted Old Yellow Enzymes in the Bienzymatic Cascade Reduction of Allylic Alcohols. ChemBioChem, 2016, 17, 561-565.	2.6	18
39	The biochemical characterization of three imine-reducing enzymes from Streptosporangium roseum DSM43021, Streptomyces turgidiscabies and Paenibacillus elgii. Applied Microbiology and Biotechnology, 2016, 100, 10509-10520.	3.6	18
40	Asymmetric Enzymatic Hydration of Unactivated, Aliphatic Alkenes. Angewandte Chemie, 2019, 131, 179-183.	2.0	17
41	Highly Enantioselectivesec-Alkyl Sulfatase Activity of Sulfolobusacidocaldarius DSM 639. Organic Letters, 2004, 6, 5009-5010.	4.6	16
42	Physicochemical Aspects of Lipase B from <i>Candida antarctica</i> in Bicontinuous Microemulsions. Langmuir, 2014, 30, 2993-3000.	3.5	16
43	Cultivation and purification of two stereoselective imine reductases from Streptosporangium roseum and Paenibacillus elgii. Protein Expression and Purification, 2017, 133, 199-204.	1.3	16
44	Enzymatic Addition of Alcohols to Terpenes by Squalene Hopene Cyclase Variants. ChemBioChem, 2017, 18, 2222-2225.	2.6	16
45	An Enzyme Cascade Synthesis of Vanillin. Catalysts, 2019, 9, 252.	3.5	16
46	Stereoselective hydrolysis of sec-mono-alkyl sulfate esters with retention of configuration. Tetrahedron, 2005, 61, 1517-1521.	1.9	15
47	Biocatalytic racemization of synthetically important functionalized α-hydroxyketones using microbial cells. Tetrahedron: Asymmetry, 2007, 18, 1465-1474.	1.8	15
48	Biocatalytic racemization of \hat{l}_{\pm} -hydroxycarboxylic acids using a stereo-complementary pair of \hat{l}_{\pm} -hydroxycarboxylic acid dehydrogenases. Tetrahedron, 2009, 65, 7752-7755.	1.9	15
49	Biooxidation of n-butane to 1-butanol by engineered P450 monooxygenase under increased pressure. Journal of Biotechnology, 2014, 191, 86-92.	3.8	15
50	Highly enantioselective stereo-inverting sec-alkylsulfatase activity of hyperthermophilic Archaea. Organic and Biomolecular Chemistry, 2005, 3, 2652.	2.8	14
51	Biocatalytic racemization of sec-alcohols and $\hat{l}\pm$ -hydroxyketones using lyophilized microbial cells. Applied Microbiology and Biotechnology, 2007, 76, 1001-1008.	3.6	14
52	Synthesis of Sebacic Acid Using a Deâ€Novo Designed Retroâ€Aldolase as a Key Catalyst. ChemCatChem, 2017, 9, 1378-1382.	3.7	14
53	Activity of squalene-hopene cyclases in bicontinuous microemulsions. Colloids and Surfaces B: Biointerfaces, 2015, 135, 735-741.	5.0	12
54	αâ€Hydroxylation of Carboxylic Acids Catalyzed by Taurine Dioxygenase. ChemCatChem, 2016, 8, 1361-1366.	3.7	10

#	Article	IF	Citations
55	Biocatalyst Screening with a Twist: Application of Oxygen Sensors Integrated in Microchannels for Screening Whole Cell Biocatalyst Variants. Bioengineering, 2018, 5, 30.	3.5	9
56	Enzymatic Friedelâ€Crafts Alkylation Using Squaleneâ€Hopene Cyclases. ChemCatChem, 2021, 13, 3405-3409.	3.7	9
57	Purification and Characterization of Recombinant Expressed Apple Allergen Mal d 1. Methods and Protocols, 2021, 4, 3.	2.0	8
58	Inverting the Stereoselectivity of an NADHâ€Dependent Imineâ€Reductase Variant. ChemCatChem, 2021, 13, 5210-5215.	3.7	8
59	Surfactant Monolayer Bending Elasticity in Lipase Containing Bicontinuous Microemulsions. Frontiers in Chemistry, 2020, 8, 613388.	3.6	6
60	Process Investigations on the One-Pot Synthesis of Rifamycin S Avoiding Chlorinated Solvents. Organic Process Research and Development, 2015, 19, 1544-1547.	2.7	5
61	Cascade Biotransformation to Access 3â€Methylpiperidine in Whole Cells. ChemCatChem, 2019, 11, 5738-5742.	3.7	5
62	Engineering of Thermostable βâ€Hydroxyacid Dehydrogenase for the Asymmetric Reduction of Imines. ChemBioChem, 2020, 21, 3511-3514.	2.6	5
63	Kýnstliche Enzymkaskaden angetrieben mittels elektrischer Energie. Angewandte Chemie, 2020, 132, 11021-11025.	2.0	2
64	Chemistry gets the assist. Nature Chemical Biology, 2013, 9, 470-471.	8.0	1
65	Whole-Cell One-Pot Biosynthesis of Azelaic Acid. ChemCatChem, 2014, 6, 899-899.	3.7	1
66	Highly Enantioselective sec-Alkyl Sulfatase Activity of Sulfolobus acidocaldarius DSM 639 ChemInform, 2005, 36, no.	0.0	0
67	Cover Image, Volume 84, Issue 5. Proteins: Structure, Function and Bioinformatics, 2016, 84, C4.	2.6	0
68	Editorial overview: New pieces in the redox puzzle: oxidative and reductive transformations in biotechnology. Current Opinion in Chemical Biology, 2019, 49, A1-A3.	6.1	0