
Ruiyuan Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7794669/publications.pdf Version: 2024-02-01

Ριινιίλη Τιλη

#	Article	IF	CITATIONS
1	Recent Advances in Aqueous Batteries with Nonmetal Cations as Charge Carriers. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	5
2	Cyclic production of biocompatible few-layer graphene ink with in-line shear-mixing for inkjet-printed electrodes and Li-ion energy storage. Npj 2D Materials and Applications, 2022, 6, .	3.9	15
3	Quantifying the Effect of Separator Thickness on Rate Performance in Lithium-Ion Batteries. Journal of the Electrochemical Society, 2022, 169, 030503.	1.3	17
4	Liquid phase exfoliation of nonlayered non-van der Waals iron trifluoride (FeF3) into 2D-platelets for high-capacity lithium storing cathodes. FlatChem, 2022, 33, 100360.	2.8	15
5	Liquid Exfoliated SnP ₃ Nanosheets for Very High Areal Capacity Lithiumâ€lon Batteries. Advanced Energy Materials, 2021, 11, 2002364.	10.2	40
6	2D nanosheets from fool's gold by LPE: High performance lithium-ion battery anodes made from stone. FlatChem, 2021, 30, 100295.	2.8	6
7	Developing models to fit capacity–rate data in battery systems. Current Opinion in Electrochemistry, 2020, 21, 1-6.	2.5	10
8	Quantifying the Dependence of Battery Rate Performance on Electrode Thickness. ACS Applied Energy Materials, 2020, 3, 10154-10163.	2.5	16
9	Quantifying the Effect of Electronic Conductivity on the Rate Performance of Nanocomposite Battery Electrodes. ACS Applied Energy Materials, 2020, 3, 2966-2974.	2.5	75
10	Production of Quasi-2D Platelets of Nonlayered Iron Pyrite (FeS ₂) by Liquid-Phase Exfoliation for High Performance Battery Electrodes. ACS Nano, 2020, 14, 13418-13432.	7.3	45
11	Using chronoamperometry to rapidly measure and quantitatively analyse rate-performance in battery electrodes. Journal of Power Sources, 2020, 468, 228220.	4.0	16
12	Effect of the Gate Volume on the Performance of Printed Nanosheet Network-Based Transistors. ACS Applied Electronic Materials, 2020, 2, 2164-2170.	2.0	6
13	The Rate Performance of Two-Dimensional Material-Based Battery Electrodes May Not Be as Good as Commonly Believed. ACS Nano, 2020, 14, 3129-3140.	7.3	58
14	Liquid phase exfoliation of GeS nanosheets in ambient conditions for lithium ion battery applications. 2D Materials, 2020, 7, 035015.	2.0	25
15	High Charge and Discharge Rate Limitations in Ordered Macroporous Li-ion Battery Materials. Journal of the Electrochemical Society, 2020, 167, 140532.	1.3	3
16	Quantifying the Tradeâ€Off between Absolute Capacity and Rate Performance in Battery Electrodes. Advanced Energy Materials, 2019, 9, 1901359.	10.2	43
17	High areal capacity battery electrodes enabled by segregated nanotube networks. Nature Energy, 2019, 4, 560-567.	19.8	281
18	Quantifying the factors limiting rateÂperformance in battery electrodes. Nature Communications, 2019, 10, 1933.	5.8	185

Ruiyuan Tian

#	Article	IF	CITATIONS
19	Solvent exfoliation stabilizes TiS ₂ nanosheets against oxidation, facilitating lithium storage applications. Nanoscale, 2019, 11, 6206-6216.	2.8	44
20	Liquid phase exfoliation of MoO ₂ nanosheets for lithium ion battery applications. Nanoscale Advances, 2019, 1, 1560-1570.	2.2	35
21	Enhanced capacity and lower mean charge voltage of Li-rich cathodes for lithium ion batteries resulting from low-temperature electrochemical activation. RSC Advances, 2017, 7, 7116-7121.	1.7	25
22	Highâ€Temperature Treatment of Liâ€Rich Cathode Materials with Ammonia: Improved Capacity and Mean Voltage Stability during Cycling. Advanced Energy Materials, 2017, 7, 1700708.	10.2	139
23	Drastically Enhanced High-Rate Performance of Carbon-Coated LiFePO ₄ Nanorods Using a Green Chemical Vapor Deposition (CVD) Method for Lithium Ion Battery: A Selective Carbon Coating Process. ACS Applied Materials & Interfaces, 2015, 7, 11377-11386.	4.0	65
24	On the drastically improved performance of Fe - doped LiMn2O4 nanoparticles prepared by a facile solution - gelation route. Electrochimica Acta, 2015, 180, 138-146.	2.6	58
25	Synthesis and characterization of oriented linked LiFePO4 nanoparticles with fast electron and ion transport for high-power lithium-ion batteries. Nano Research, 2015, 8, 3803-3814.	5.8	25
26	Very high power and superior rate capability LiFePO ₄ nanorods hydrothermally synthesized using tetraglycol as surfactant. RSC Advances, 2015, 5, 1859-1866.	1.7	16
27	Formation, structure and electrochemical performance of nano-sized Li2FeSiO4/C synthesized with the co-incorporation of citric acid and glucose followed by a two-step annealing. RSC Advances, 2014, 4, 64702-64710.	1.7	4
28	Structure, Optical, and Catalytic Properties of Novel Hexagonal Metastable <i>h</i> -MoO ₃ Nano- and Microrods Synthesized with Modified Liquid-Phase Processes. Chemistry of Materials, 2010, 22, 6202-6208.	3.2	99
29	In-situ electrochemical synthesis of high-performance S/VOx composite for aqueous zinc ion battery. Journal Physics D: Applied Physics, 0, , .	1.3	2