Alejandro Ruiz-Picazo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7794524/publications.pdf

Version: 2024-02-01

12	140	1162367	1	1199166	
13 papers	140 citations	8 h-index		12 g-index	
papera	Citations	II IIICA		g mucx	
13	13	13		181	
all docs	docs citations	times ranked		citing authors	
				S	

#	Article	IF	CITATIONS
1	In Vitro Dissolution as a Tool for Formulation Selection: Telmisartan Two-Step IVIVC. Molecular Pharmaceutics, 2018, 15, 2307-2315.	2.3	26
2	Comparison of segmental-dependent permeability in human and in situ perfusion model in rat. European Journal of Pharmaceutical Sciences, 2017, 107, 191-196.	1.9	21
3	Determination of intestinal permeability using in situ perfusion model in rats: Challenges and advantages to BCS classification applied to digoxin. International Journal of Pharmaceutics, 2018, 551, 148-157.	2.6	18
4	Exploring Bioequivalence of Dexketoprofen Trometamol Drug Products with the Gastrointestinal Simulator (GIS) and Precipitation Pathways Analyses. Pharmaceutics, 2019, 11, 122.	2.0	17
5	In vitro prediction of in vivo absorption of ibuprofen from suspensions through rational choice of dissolution conditions. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 149, 229-237.	2.0	14
6	Investigation to Explain Bioequivalence Failure in Pravastatin Immediate-Release Products. Pharmaceutics, 2019, 11, 663.	2.0	10
7	Effect of excipients on oral absorption process according to the different gastrointestinal segments. Expert Opinion on Drug Delivery, 2021, 18, 1005-1024.	2.4	8
8	Effect of Common Excipients on Intestinal Drug Absorption in Wistar Rats. Molecular Pharmaceutics, 2020, 17, 2310-2318.	2.3	8
9	An In Vivo Predictive Dissolution Methodology (iPD Methodology) with a BCS Class IIb Drug Can Predict the In Vivo Bioequivalence Results: Etoricoxib Products. Pharmaceutics, 2021, 13, 507.	2.0	7
10	Effect of thickener on disintegration, dissolution and permeability of common drug products for elderly patients. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 153, 168-176.	2.0	6
11	pH-Dependent Molecular Gate Mesoporous Microparticles for Biological Control of Giardia intestinalis. Pharmaceutics, 2021, 13, 94.	2.0	3
12	One and Two-Step In Vitro-In Vivo Correlations Based on USP IV Dynamic Dissolution Applied to Four Sodium Montelukast Products. Pharmaceutics, 2021, 13, 690.	2.0	2
13	Integration of In Silico, In Vitro and In Situ Tools for the Preformulation and Characterization of a Novel Cardio-Neuroprotective Compound during the Early Stages of Drug Development. Pharmaceutics, 2022, 14, 182.	2.0	0