Natalie Sebanz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7794063/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The sound of silence: an EEG study of how musicians time pauses in individual and joint music performance. Social Cognitive and Affective Neuroscience, 2021, 16, 31-42.	1.5	8
2	Intentional synchronisation affects automatic imitation and source memory. Scientific Reports, 2021, 11, 573.	1.6	4
3	Progress in Joint-Action Research. Current Directions in Psychological Science, 2021, 30, 138-143.	2.8	53
4	Task Construal Influences Estimations of the Environment. Frontiers in Human Neuroscience, 2021, 15, 625193.	1.0	1
5	Computing Joint Action Costs: Co-Actors Minimize the Aggregate Individual Costs in an Action Sequence. Open Mind, 2021, 5, 1-13.	0.6	5
6	Synchronicities that shape the perception of joint action. Scientific Reports, 2020, 10, 15554.	1.6	11
7	Making sense of human interaction benefits from communicative cues. Scientific Reports, 2020, 10, 18135.	1.6	5
8	Adaptation to unstable coordination patterns in individual and joint actions. PLoS ONE, 2020, 15, e0232667.	1.1	2
9	Effects of a partner's task on memory for content and source. Cognition, 2020, 198, 104221.	1.1	5
10	The engaging nature of interactive gestures. PLoS ONE, 2020, 15, e0232128.	1.1	4
11	Interacting With Multiple Partners Improves Communication Skills. Cognitive Science, 2020, 44, e12836.	0.8	6
12	How does a partner's motor variability affect joint action?. PLoS ONE, 2020, 15, e0241417.	1.1	10
13	The engaging nature of interactive gestures. , 2020, 15, e0232128.		0
14	The engaging nature of interactive gestures. , 2020, 15, e0232128.		0
15	The engaging nature of interactive gestures. , 2020, 15, e0232128.		0
16	The engaging nature of interactive gestures. , 2020, 15, e0232128.		0
17	How does a partner's motor variability affect joint action?. , 2020, 15, e0241417.		0
18	How does a partner's motor variability affect joint action?. , 2020, 15, e0241417.		0

2

#	Article	IF	CITATIONS
19	How does a partner's motor variability affect joint action?. , 2020, 15, e0241417.		0
20	How does a partner's motor variability affect joint action?. , 2020, 15, e0241417.		0
21	How does a partner's motor variability affect joint action?. , 2020, 15, e0241417.		0
22	How does a partner's motor variability affect joint action?. , 2020, 15, e0241417.		0
23	The role of emotion in the dyad inversion effect. PLoS ONE, 2019, 14, e0219185.	1.1	9
24	Combining Phase Advancement and Period Correction Explains Rushing during Joint Rhythmic Activities. Scientific Reports, 2019, 9, 9350.	1.6	12
25	Imagine All The Synchrony: The effects of actual and imagined synchronous walking on attitudes towards marginalised groups. PLoS ONE, 2019, 14, e0216585.	1.1	22
26	The automaticity of children's imitative group bias. Cognitive Development, 2019, 52, 100799.	0.7	7
27	Evidence for we-representations during joint action planning. Neuropsychologia, 2019, 131, 73-83.	0.7	34
28	Rationality in Joint Action: Maximizing Coefficiency in Coordination. Psychological Science, 2019, 30, 930-941.	1.8	37
29	Collective benefit in joint perceptual judgments: Partial roles of shared environments, meta-cognition, and feedback. Cognition, 2019, 189, 116-130.	1.1	3
30	Deviations from optimality should be an integral part of a working definition of SMC. Physics of Life Reviews, 2019, 28, 22-23.	1.5	4
31	Reciprocal information flow and role distribution support joint action coordination. Cognition, 2019, 187, 21-31.	1.1	33
32	Joint Action in Humans: A Model for Human-Robot Interaction. , 2019, , 2149-2167.		9
33	Relevant for us? We-prioritization in cognitive processing Journal of Experimental Psychology: Human Perception and Performance, 2019, 45, 1549-1561.	0.7	9
34	Probing links between action perception and action production in Parkinson's disease using Fitts' law. Neuropsychologia, 2018, 111, 201-208.	0.7	4
35	Reading Your Mind While You Are Reading—Evidence for Spontaneous Visuospatial Perspective Taking During a Semantic Categorization Task. Psychological Science, 2018, 29, 614-622.	1.8	23
36	Can we identify others' intentions from seeing their movements? Comment on "Seeing mental states: An experimental strategy for measuring the observability of other minds―by Cristina Becchio et al Physics of Life Reviews, 2018, 24, 84-87.	1.5	1

#	Article	IF	CITATIONS
37	Co-actors represent the order of each other's actions. Cognition, 2018, 181, 65-79.	1.1	14
38	When Height Carries Weight: Communicating Hidden Object Properties for Joint Action. Cognitive Science, 2018, 42, 2021-2059.	0.8	8
39	Imitation from a joint action perspective. Mind and Language, 2018, 33, 342-354.	1.2	5
40	Identifying others' informative intentions from movement kinematics. Cognition, 2018, 180, 246-258.	1.1	19
41	Joint action coordination in expert-novice pairs: Can experts predict novices' suboptimal timing?. Cognition, 2018, 178, 103-108.	1.1	19
42	Imitation of coordinated actions: How do children perceive relations between different parts?. PLoS ONE, 2018, 13, e0189717.	1.1	3
43	Distinct kinematic markers of demonstration and joint action coordination? Evidence from virtual xylophone playing Journal of Experimental Psychology: Human Perception and Performance, 2018, 44, 885-897.	0.7	24
44	Co-representation of others' task constraints in joint action Journal of Experimental Psychology: Human Perception and Performance, 2017, 43, 1480-1493.	0.7	33
45	Perceptual judgments made better by indirect interactions: Evidence from a joint localization task. PLoS ONE, 2017, 12, e0187428.	1.1	5
46	Joint Action in Humans: A Model for Human-Robot Interactions. , 2017, , 1-19.		5
47	Out of your sight, out of my mind: Knowledge about another person's visual access modulates spontaneous visuospatial perspective-taking Journal of Experimental Psychology: Human Perception and Performance, 2017, 43, 1065-1072.	0.7	27
48	Observing joint action: Coordination creates commitment. Cognition, 2016, 157, 106-113.	1.1	87
49	The role of shared visual information for joint action coordination. Cognition, 2016, 153, 118-123.	1.1	72
50	Mechanisms and development of self–other distinction in dyads and groups. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150076.	1.8	14
51	(How) observed eye-contact modulates gaze following. An fMRI study. Cognitive Neuroscience, 2016, 7, 55-66.	0.6	5
52	When do humans spontaneously adopt another's visuospatial perspective?. Journal of Experimental Psychology: Human Perception and Performance, 2016, 42, 401-412.	0.7	47
53	Synchronous imitation of continuous action sequences: The role of spatial and topological mapping Journal of Experimental Psychology: Human Perception and Performance, 2015, 41, 1209-1222.	0.7	11
54	Neural correlates of observing joint actions with shared intentions. Cortex, 2015, 70, 90-100.	1.1	28

#	Article	IF	CITATIONS
55	Spatial parameters at the basis of social transfer of learning Journal of Experimental Psychology: Human Perception and Performance, 2015, 41, 840-849.	0.7	10
56	The Sense of Commitment: A Minimal Approach. Frontiers in Psychology, 2015, 6, 1968.	1.1	71
57	Scaling up perception–action links: Evidence from synchronization with individual and joint action Journal of Experimental Psychology: Human Perception and Performance, 2014, 40, 1551-1565.	0.7	16
58	Invisible Man. Social Psychological and Personality Science, 2014, 5, 140-148.	2.4	39
59	Individualism-collectivism and interpersonal memory guidance of attention. Journal of Experimental Social Psychology, 2014, 54, 102-114.	1.3	12
60	Effects of Observing Eye Contact on Gaze Following in High-Functioning Autism. Journal of Autism and Developmental Disorders, 2014, 44, 1651-1658.	1.7	20
61	Attention Allocation and Task Representation during Joint Action Planning. Journal of Cognitive Neuroscience, 2014, 26, 2275-2286.	1.1	46
62	Our actions in my mind: Motor imagery of joint action. Neuropsychologia, 2014, 55, 115-121.	0.7	29
63	Do people automatically track others' beliefs? Evidence from a continuous measure. Cognition, 2014, 130, 128-133.	1.1	73
64	On predicting others' words: Electrophysiological evidence of prediction in speech production. Cognition, 2014, 133, 395-407.	1.1	43
65	History of interaction and task distribution modulate action simulation. Neuropsychologia, 2013, 51, 1240-1247.	0.7	12
66	Are you ready to jump? Predictive mechanisms in interpersonal coordination Journal of Experimental Psychology: Human Perception and Performance, 2013, 39, 48-61.	0.7	105
67	Your words are my words: Effects of acting together on encoding. Quarterly Journal of Experimental Psychology, 2013, 66, 1026-1034.	0.6	56
68	Predictive representation of other people's actions in joint action planning: An EEG study. Social Neuroscience, 2013, 8, 31-42.	0.7	78
69	Experiencing ownership over a dark-skinned body reduces implicit racial bias. Cognition, 2013, 128, 170-178.	1.1	182
70	How does "mirroring―support joint action?. Cortex, 2013, 49, 2964-2965.	1.1	19
71	Monitoring Individual and Joint Action Outcomes in Duet Music Performance. Journal of Cognitive Neuroscience, 2013, 25, 1049-1061.	1.1	126
72	Effects of a coactor's focus of attention on task performance Journal of Experimental Psychology: Human Perception and Performance, 2012, 38, 1404-1415.	0.7	84

#	Article	IF	CITATIONS
73	A co-actor's focus of attention affects stimulus processing and task performance: An ERP study. Social Neuroscience, 2012, 7, 565-577.	0.7	10
74	The sense of agency during skill learning in individuals and dyads. Consciousness and Cognition, 2012, 21, 1267-1279.	0.8	57
75	Expecting to lift a box together makes the load look lighter. Psychological Research, 2012, 76, 467-475.	1.0	63
76	EEG correlates of Fitts's law during preparation for action. Psychological Research, 2012, 76, 514-524.	1.0	14
77	Action Perception from a Common Coding Perspective. , 2012, , 101-118.		2
78	Psychological Research on Joint Action. Psychology of Learning and Motivation - Advances in Research and Theory, 2011, , 59-101.	0.5	280
79	No evidence of contagious yawning in the red-footed tortoise Geochelone carbonaria. Environmental Epigenetics, 2011, 57, 477-484.	0.9	27
80	The GROOP effect: Groups mimic group actions. Cognition, 2011, 118, 135-140.	1.1	80
81	Observing shared attention modulates gaze following. Cognition, 2011, 120, 292-298.	1.1	43
82	Giving a helping hand: effects of joint attention on mental rotation of body parts. Experimental Brain Research, 2011, 211, 531-545.	0.7	42
83	Contextual determinants of the social-transfer-of-learning effect. Experimental Brain Research, 2011, 211, 415-422.	0.7	25
84	Making oneself predictable: reduced temporal variability facilitates joint action coordination. Experimental Brain Research, 2011, 211, 517-530.	0.7	154
85	The joint flanker effect: sharing tasks with real and imagined co-actors. Experimental Brain Research, 2011, 211, 371-385.	0.7	143
86	Moving together: toward understanding the mechanisms of joint action. Experimental Brain Research, 2011, 211, 329-336.	0.7	53
87	The effect of social context on the use of visual information. Experimental Brain Research, 2011, 214, 273-284.	0.7	50
88	Editorial: Joint Action: What Is Shared?. Review of Philosophy and Psychology, 2011, 2, 137-146.	1.0	26
89	Let the force be with us: Dyads exploit haptic coupling for coordination Journal of Experimental Psychology: Human Perception and Performance, 2011, 37, 1420-1431.	0.7	130
90	On the inclusion of externally controlled actions in action planning Journal of Experimental Psychology: Human Perception and Performance, 2011, 37, 1407-1419.	0.7	7

#	Article	IF	CITATIONS
91	A truth that's told with bad intent: An ERP study of deception. Cognition, 2010, 114, 105-110.	1.1	45
92	Others' Actions Reduce Crossmodal Integration in Peripersonal Space. Current Biology, 2010, 20, 1345-1349.	1.8	75
93	A minimal architecture for joint action. Neural Networks, 2010, 23, 998-1003.	3.3	299
94	Favouritism in the motor system: social interaction modulates action simulation. Biology Letters, 2010, 6, 758-761.	1.0	112
95	Socializing Cognition. On Thinking, 2010, , 233-250.	0.5	3
96	Jumping on the ecological bandwagon? Mind the gap!. European Journal of Social Psychology, 2009, 39, 1230-1233.	1.5	7
97	Detecting deception in a bluffing body: The role of expertise. Psychonomic Bulletin and Review, 2009, 16, 170-175.	1.4	164
98	Joint Action: Current Perspectives. Topics in Cognitive Science, 2009, 1, 255-259.	1.1	60
99	Prediction in Joint Action: What, When, and Where. Topics in Cognitive Science, 2009, 1, 353-367.	1.1	477
100	Cognitive Ethology for humans: Inconvenient truth or attentional deficit?. British Journal of Psychology, 2008, 99, 347-350.	1.2	4
101	Evolving intentions for social interaction: from entrainment to joint action. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 2021-2031.	1.8	199
102	Action co-representation: The joint SNARC effect. Social Neuroscience, 2008, 3, 410-420.	0.7	112
103	The role of the mirror system in embodied communication. , 2008, , 129-150.		1
104	Is it really my turn? An event-related fMRI study of task sharing. Social Neuroscience, 2007, 2, 81-95.	0.7	65
105	Who's calling the shots? Intentional content and feelings of control. Consciousness and Cognition, 2007, 16, 859-876.	0.8	22
106	The Social Nature of Perception and Action. Current Directions in Psychological Science, 2006, 15, 99-104.	2.8	232
107	Twin Peaks: An ERP Study of Action Planning and Control in Coacting Individuals. Journal of Cognitive Neuroscience, 2006, 18, 859-870.	1.1	197
108	Joint action: bodies and minds moving together. Trends in Cognitive Sciences, 2006, 10, 70-76.	4.0	1,534

#	Article	IF	CITATIONS
109	How Two Share a Task: Corepresenting Stimulus-Response Mappings Journal of Experimental Psychology: Human Perception and Performance, 2005, 31, 1234-1246.	0.7	256
110	Far from action-blind: Representation of others' actions in individuals with Autism. Cognitive Neuropsychology, 2005, 22, 433-454.	0.4	114
111	Agency in the face of error. Trends in Cognitive Sciences, 2005, 9, 259-261.	4.0	19
112	Simulation, mirroring, and a different argument from error. Trends in Cognitive Sciences, 2005, 9, 320-320.	4.0	25
113	Conscious will in the absence of ghosts, hypnotists, and other people. Behavioral and Brain Sciences, 2004, 27, 674-675.	0.4	37
114	Beyond simulation? Neural mechanisms for predicting the actions of others. Nature Neuroscience, 2004, 7, 5-6.	7.1	32
115	Representing others' actions: just like one's own?. Cognition, 2003, 88, B11-B21.	1.1	610
116	Acting Together: Representations and Coordination Processes. , 0, , 216-235.		4