Surjo R Soekadar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7793899/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Brain–machine interface in chronic stroke rehabilitation: A controlled study. Annals of Neurology, 2013, 74, 100-108.	5.3	754
2	Think to Move: a Neuromagnetic Brain-Computer Interface (BCI) System for Chronic Stroke. Stroke, 2008, 39, 910-917.	2.0	537
3	Brainâ€computer interfaces for postâ€stroke motor rehabilitation: a metaâ€analysis. Annals of Clinical and Translational Neurology, 2018, 5, 651-663.	3.7	300
4	Brain–machine interfaces in neurorehabilitation of stroke. Neurobiology of Disease, 2015, 83, 172-179.	4.4	256
5	BDNF serum and CSF concentrations in Alzheimer's disease, normal pressure hydrocephalus and healthy controls. Journal of Psychiatric Research, 2007, 41, 387-394.	3.1	249
6	Acquired selfâ€control of insula cortex modulates emotion recognition and brain network connectivity in schizophrenia. Human Brain Mapping, 2013, 34, 200-212.	3.6	242
7	Innovative diagnostic tools for early detection of Alzheimer's disease. Alzheimer's and Dementia, 2015, 11, 561-578.	0.8	213
8	Guiding transcranial brain stimulation by EEG/MEG to interact with ongoing brain activity and associated functions: A position paper. Clinical Neurophysiology, 2017, 128, 843-857.	1.5	211
9	Combination of Brain-Computer Interface Training and Goal-Directed Physical Therapy in Chronic Stroke: A Case Report. Neurorehabilitation and Neural Repair, 2010, 24, 674-679.	2.9	189
10	Consensus on the reporting and experimental design of clinical and cognitive-behavioural neurofeedback studies (CRED-nf checklist). Brain, 2020, 143, 1674-1685.	7.6	188
11	A large, open source dataset of stroke anatomical brain images and manual lesion segmentations. Scientific Data, 2018, 5, 180011.	5.3	170
12	Mapping entrained brain oscillations during transcranial alternating current stimulation (tACS). NeuroImage, 2016, 140, 89-98.	4.2	144
13	Increased Plasma Concentration of Brain-Derived Neurotrophic Factor With Electroconvulsive Therapy. Journal of Clinical Psychiatry, 2007, 68, 512-517.	2.2	99
14	Improving Motor Corticothalamic Communication After Stroke Using Real-Time fMRI Connectivity-Based Neurofeedback. Neurorehabilitation and Neural Repair, 2016, 30, 671-675.	2.9	89
15	Help, hope, and hype: Ethical dimensions ofneuroprosthetics. Science, 2017, 356, 1338-1339.	12.6	83
16	Brain oscillation-synchronized stimulation of the left dorsolateral prefrontal cortex in depression using real-time EEG-triggered TMS. Brain Stimulation, 2020, 13, 197-205.	1.6	80
17	In vivo assessment of human brain oscillations during application of transcranial electric currents. Nature Communications, 2013, 4, 2032.	12.8	79
18	ERD-Based Online Brain–Machine Interfaces (BMI) in the Context of Neurorehabilitation: Optimizing BMI Learning and Performance. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2011, 19, 542-549.	4.9	66

#	Article	lF	CITATIONS
19	Enhancing brain-machine interface (BMI) control of a hand exoskeleton using electrooculography (EOG). Journal of NeuroEngineering and Rehabilitation, 2014, 11, 165.	4.6	65
20	tACS Phase Locking of Frontal Midline Theta Oscillations Disrupts Working Memory Performance. Frontiers in Cellular Neuroscience, 2016, 10, 120.	3.7	61
21	Feasibility and safety of shared EEG/EOG and vision-guided autonomous whole-arm exoskeleton control to perform activities of daily living. Scientific Reports, 2018, 8, 10823.	3.3	61
22	A Mechatronic System for Robot-Mediated Hand Telerehabilitation. IEEE/ASME Transactions on Mechatronics, 2015, 20, 1753-1764.	5.8	56
23	An EEG/EOG-based hybrid brain-neural computer interaction (BNCI) system to control an exoskeleton for the paralyzed hand. Biomedizinische Technik, 2015, 60, 199-205.	0.8	56
24	Enhancement of longâ€range EEG coherence by synchronous bifocal transcranial magnetic stimulation. European Journal of Neuroscience, 2008, 27, 1577-1583.	2.6	54
25	The <scp>ENIGMA</scp> Stroke Recovery Working Group: Big data neuroimaging to study brain–behavior relationships after stroke. Human Brain Mapping, 2022, 43, 129-148.	3.6	54
26	Direct Brain Control and Communication in Paralysis. Brain Topography, 2014, 27, 4-11.	1.8	52
27	Enhancing Hebbian Learning to Control Brain Oscillatory Activity. Cerebral Cortex, 2015, 25, 2409-2415.	2.9	49
28	Gαs-coupled receptor signaling and sleep regulate integrin activation of human antigen-specific T cells. Journal of Experimental Medicine, 2019, 216, 517-526.	8.5	45
29	Learned EEG-based brain self-regulation of motor-related oscillations during application of transcranial electric brain stimulation: feasibility and limitations. Frontiers in Behavioral Neuroscience, 2014, 8, 93.	2.0	42
30	Brain–machine interfaces for rehabilitation of poststroke hemiplegia. Progress in Brain Research, 2016, 228, 163-183.	1.4	41
31	A large, curated, open-source stroke neuroimaging dataset to improve lesion segmentation algorithms. Scientific Data, 2022, 9, .	5.3	33
32	Brain–Computer Interfaces in the Rehabilitation of Stroke and Neurotrauma. , 2011, , 3-18.		32
33	Neural activity related to volitional regulation of cortical excitability. ELife, 2018, 7, .	6.0	31
34	Simultaneous transcranial direct current stimulation (tDCS) and whole-head magnetoencephalography (MEG): assessing the impact of tDCS on slow cortical magnetic fields. NeuroImage, 2016, 140, 33-40.	4.2	30
35	Odor cueing during slow-wave sleep benefits memory independently of low cholinergic tone. Psychopharmacology, 2018, 235, 291-299.	3.1	29
36	Alpha coherence predicts accuracy during a visuomotor tracking task. Neuropsychologia, 2011, 49, 3704-3709.	1.6	28

#	Article	IF	CITATIONS
37	Restoring Activities of Daily Living Using an EEG/EOG-Controlled Semiautonomous and Mobile Whole-Arm Exoskeleton in Chronic Stroke. IEEE Systems Journal, 2021, 15, 2314-2321.	4.6	28
38	Optical brain imaging and its application to neurofeedback. NeuroImage: Clinical, 2021, 30, 102577.	2.7	23
39	Theta Burst Stimulation in the Treatment of Incapacitating Tinnitus Accompanied by Severe Depression. CNS Spectrums, 2009, 14, 208-213.	1.2	22
40	Fragmentation of Slow Wave Sleep after Onset of Complete Locked-In State. Journal of Clinical Sleep Medicine, 2013, 09, 951-953.	2.6	22
41	Challenges and Opportunities for the Future of Brain-Computer Interface in Neurorehabilitation. Frontiers in Neuroscience, 2021, 15, 699428.	2.8	21
42	Stimulation artifact source separation (SASS) for assessing electric brain oscillations during transcranial alternating current stimulation (tACS). NeuroImage, 2021, 228, 117571.	4.2	19
43	Breaking the boundaries of interacting with the human brain using adaptive closed-loop stimulation. Progress in Neurobiology, 2022, 216, 102311.	5.7	18
44	Brugada Syndrome in a Patient Treated With Lithium. American Journal of Psychiatry, 2007, 164, 1440-1441.	7.2	17
45	Controlling Assistive Machines in Paralysis Using Brain Waves and Other Biosignals. Advances in Human-Computer Interaction, 2013, 2013, 1-9.	2.8	17
46	Neurophysiological Effects of Dorsal Root Ganglion Stimulation (DRGS) in Pain Processing at the Cortical Level. Neuromodulation, 2019, 22, 36-43.	0.8	17
47	Physiological Responses During Hybrid BNCI Control of an Upper-Limb Exoskeleton. Sensors, 2019, 19, 4931.	3.8	16
48	Synchronization of Slow Cortical Rhythms During Motor Imagery-Based Brain–Machine Interface Control. International Journal of Neural Systems, 2019, 29, 1850045.	5.2	15
49	Intermittent theta burst stimulation over right somatosensory larynx cortex enhances vocal pitchâ€regulation in nonsingers. Human Brain Mapping, 2019, 40, 2174-2187.	3.6	14
50	Feasibility and Safety of Bilateral Hybrid EEG/EOG Brain/Neural–Machine Interaction. Frontiers in Human Neuroscience, 2020, 14, 580105.	2.0	14
51	A brain-robot interface for studying motor learning after stroke. , 2012, , .		13
52	Restoration of Finger and Arm Movements Using Hybrid Brain/Neural Assistive Technology in Everyday Life Environments. Springer Briefs in Electrical and Computer Engineering, 2019, , 53-61.	0.5	13
53	To jump or not to jump - The Bereitschaftspotential required to jump into 192-meter abyss. Scientific Reports, 2019, 9, 2243.	3.3	13
54	Post-stroke Rehabilitation of Severe Upper Limb Paresis in Germany – Toward Long-Term Treatment With Brain-Computer Interfaces. Frontiers in Neurology, 2021, 12, 772199.	2.4	13

#	Article	IF	CITATIONS
55	Beyond the point of no return: Last-minute changes in human motor performance. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2876.	7.1	10
56	Brain–Machine Interfaces for Communication in Complete Paralysis: Ethical Implications and Challenges. , 2015, , 705-724.		10
57	Corticospinal Tract Lesion Load Originating From Both Ventral Premotor and Primary Motor Cortices Are Associated With Post-stroke Motor Severity. Neurorehabilitation and Neural Repair, 2022, 36, 179-182.	2.9	10
58	Volitional regulation of the supplementary motor area with fMRI-BCI neurofeedback in Parkinson's disease: A pilot study. , 2013, , .		9
59	Brain–Machine Interfaces in Stroke Neurorehabilitation. , 2015, , 3-14.		9
60	Transcranial electric stimulation (tES) and NeuroImaging: the state-of-the-art, new insights and prospects in basic and clinical neuroscience. NeuroImage, 2016, 140, 1-3.	4.2	9
61	Locked Out. Cambridge Quarterly of Healthcare Ethics, 2017, 26, 555-576.	0.8	9
62	Boosting working memory: uncovering the differential effects of tDCS and tACS. Cerebral Cortex Communications, 2022, 3, tgac018.	1.6	9
63	User activity recognition system to improve the performance of environmental control interfaces: a pilot study with patients. Journal of NeuroEngineering and Rehabilitation, 2019, 16, 10.	4.6	8
64	Chronic Stroke Sensorimotor Impairment Is Related to Smaller Hippocampal Volumes: An ENIGMA Analysis. Journal of the American Heart Association, 2022, 11, e025109.	3.7	8
65	Using Brain Waves to Control Computers and Machines. Advances in Human-Computer Interaction, 2013, 2013, 1-2.	2.8	7
66	A new hand assessment instrument for severely affected stroke patients. NeuroRehabilitation, 2014, 34, 409-427.	1.3	7
67	Overnight memory consolidation facilitates rather than interferes with new learning of similar materials—a study probing NMDA receptors. Neuropsychopharmacology, 2018, 43, 2292-2298.	5.4	7
68	On The Verge of the Hybrid Mind. Morals & Machines, 2021, 1, 30-43.	0.3	7
69	Smaller spared subcortical nuclei are associated with worse post-stroke sensorimotor outcomes in 28 cohorts worldwide. Brain Communications, 2021, 3, fcab254.	3.3	7
70	Brain-computer interfaces for stroke rehabilitation: summary of the 2016 BCI Meeting in Asilomar. Brain-Computer Interfaces, 2018, 5, 41-57.	1.8	6
71	Neuroprosthetics 2.0. EBioMedicine, 2019, 48, 22.	6.1	6
72	Delta-Theta Intertrial Phase Coherence Increases During Task Switching in a BCI Paradigm. Lecture Notes in Computer Science, 2017, , 96-108.	1.3	6

#	Article	IF	CITATIONS
73	Brain-Computer Interfaces (BCI): Restoration of Movement and Thought from Neuroelectric and Metabolic Brain Activity. , 2008, , 229-252.		6
74	Minimizing Biosignal Recording Sites for Noninvasive Hybrid Brain/Neural Control. IEEE Systems Journal, 2021, 15, 1540-1546.	4.6	5
75	Specific changes in sleep oscillations after blocking human metabotropic glutamate receptor 5 in the absence of altered memory function. Journal of Psychopharmacology, 2021, 35, 652-667.	4.0	4
76	Heart rate variability predicts decline in sensorimotor rhythm control. Journal of Neural Engineering, 2021, 18, 0460b5.	3.5	4
77	Interaction techniques for a neural-guided hand exoskeleton. Procedia Computer Science, 2018, 141, 442-446.	2.0	3
78	Neurorehabilitation: Neural Plasticity and Functional Recovery 2018. Neural Plasticity, 2019, 2019, 1-3.	2.2	3
79	Neural-gesteuerte Robotik für Assistenz und Rehabilitation im Alltag. , 2020, , 117-131.		3
80	LEARNED CONTROL OF INSULAR ACTIVITY USING fMRI BRAIN COMPUTER INTERFACE IN SCHIZOPHRENIA. Schizophrenia Research, 2008, 102, 92.	2.0	2
81	Advancing sensory neuroprosthetics using artificial brain networks. Patterns, 2021, 2, 100304.	5.9	2
82	LEARNING TO SELF-REGULATE INSULA CORTEX MODULATES EMOTION RECOGNITION AND NEURAL CONNECTIVITY IN SCHIZOPHRENIA. Schizophrenia Research, 2010, 117, 178.	2.0	1
83	Pathological Delta Oscillations in Hallucinogen Persisting Perception Disorder: A Case Report. Frontiers in Psychiatry, 2022, 13, 867314.	2.6	1
84	Adaptation Strategies for Personalized Gait Neuroprosthetics. Frontiers in Neurorobotics, 2021, 15, 750519.	2.8	1
85	On "A four-week, task-specific neuroprosthesis program…―Dunning K, et al. Phys Ther. 2008;88:397–405 Physical Therapy, 2008, 88, 970-970.	2.4	0
86	Improving the Efficacy of Ipsilesional Brain-Computer Interface Training in Neurorehabilitation of Chronic Stroke. Biosystems and Biorobotics, 2014, , 75-84.	0.3	0
87	99. Alpha-Synchronized Stimulation of the Left Dorsolateral Prefrontal Cortex in Depression Using Real-Time EEG-Triggered TMS. Biological Psychiatry, 2019, 85, S41.	1.3	0
88	Sensory Feedback with a Hand Exoskeleton Increases EEG Modulation in a Brain-Machine Interface System. Biosystems and Biorobotics, 2019, , 1101-1105.	0.3	0
89	A set of electroencephalographic (EEG) data recorded during amplitude-modulated transcranial alternating current stimulation (AM-tACS) targeting 10-Hz steady-state visually evoked potentials (SSVEP). Data in Brief, 2021, 36, 107011.	1.0	0
90	The relationship of motor cortex excitability and lesion location in chronic stroke patients. Frontiers in Computational Neuroscience, 0, 5, .	2.1	0

#	Article	IF	CITATIONS
91	Introduction. International Journal of Neural Systems, 2021, 31, 2103010.	5.2	0