
Heinz Fischer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7793625/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DNA hypomethylation leads to cGASâ€induced autoinflammation in the epidermis. EMBO Journal, 2021, 40, e108234.	7.8	17
2	Pangolins Lack IFIH1/MDA5, a Cytoplasmic RNA Sensor That Initiates Innate Immune Defense Upon Coronavirus Infection. Frontiers in Immunology, 2020, 11, 939.	4.8	45
3	Cytosolic DNA sensing through cGAS and STING is inactivated by gene mutations in pangolins. Apoptosis: an International Journal on Programmed Cell Death, 2020, 25, 474-480.	4.9	16
4	Differential Evolution of the Epidermal Keratin Cytoskeleton in Terrestrial and Aquatic Mammals. Molecular Biology and Evolution, 2019, 36, 328-340.	8.9	51
5	The caspase-1 inhibitor CARD18 is specifically expressed during late differentiation of keratinocytes and its expression is lost in lichen planus. Journal of Dermatological Science, 2017, 87, 176-182.	1.9	8
6	MCPIP1 contributes to the inflammatory response of UVB-treated keratinocytes. Journal of Dermatological Science, 2017, 87, 10-18.	1.9	12
7	Inactivation of DNase1L2 and DNase2 in keratinocytes suppresses DNA degradation during epidermal cornification and results in constitutive parakeratosis. Scientific Reports, 2017, 7, 6433.	3.3	27
8	Double deficiency of Trex2 and DNase1L2 nucleases leads to accumulation of DNA in lingual cornifying keratinocytes without activating inflammatory responses. Scientific Reports, 2017, 7, 11902.	3.3	14
9	Holocrine Secretion of Sebum Is a Unique DNase2-Dependent Mode of Programmed Cell Death. Journal of Investigative Dermatology, 2017, 137, 587-594.	0.7	67
10	Localisation of keratin K78 in the basal layer and first suprabasal layers of stratified epithelia completes expression catalogue of type II keratins and provides new insights into sequential keratin expression. Cell and Tissue Research, 2016, 363, 735-750.	2.9	11
11	Keratins K2 and K10 are essential for the epidermal integrity of plantar skin. Journal of Dermatological Science, 2016, 81, 10-16.	1.9	19
12	Comparative genomics reveals conservation of filaggrin and loss of caspaseâ€14 in dolphins. Experimental Dermatology, 2015, 24, 365-369.	2.9	35
13	Multifaceted role of TREX2 in the skin defense against UV-induced skin carcinogenesis. Oncotarget, 2015, 6, 22375-22396.	1.8	14
14	Loss of Keratin K2 Expression Causes Aberrant Aggregation of K10, Hyperkeratosis, and Inflammation. Journal of Investigative Dermatology, 2014, 134, 2579-2588.	0.7	31
15	A Comparative Proteomic Study of Human Skin Suction Blister Fluid from Healthy Individuals Using Immunodepletion and iTRAQ Labeling. Journal of Proteome Research, 2012, 11, 3715-3727.	3.7	62
16	Mechanisms and emerging functions of DNA degradation in the epidermis. Frontiers in Bioscience - Landmark, 2012, 17, 2461.	3.0	26
17	In situ labeling of DNA reveals interindividual variation in nuclear DNA breakdown in hair and may be useful to predict success of forensic genotyping of hair. International Journal of Legal Medicine, 2012, 126, 63-70.	2.2	27
18	Essential Role of the Keratinocyte-Specific Endonuclease DNase1L2 in the Removal of Nuclear DNA from Hair and Nails. Journal of Investigative Dermatology, 2011, 131, 1208-1215.	0.7	59

Heinz Fischer

#	Article	IF	CITATIONS
19	DNase 2 Is the Main DNA-Degrading Enzyme of the Stratum Corneum. PLoS ONE, 2011, 6, e17581.	2.5	42
20	Duplication of the caspase-12 prodomain and inactivation of NLRC4/IPAF in the dog. Biochemical and Biophysical Research Communications, 2009, 384, 226-230.	2.1	10
21	Histidase expression in human epidermal keratinocytes: Regulation by differentiation status and all-trans retinoic acid. Journal of Dermatological Science, 2008, 50, 209-215.	1.9	27
22	Identification of Novel Mammalian Caspases Reveals an Important Role of Gene Loss in Shaping the Human Caspase Repertoire. Molecular Biology and Evolution, 2008, 25, 831-841.	8.9	95
23	Phylogenomics of caspase-activated DNA fragmentation factor. Biochemical and Biophysical Research Communications, 2007, 356, 293-299.	2.1	15
24	DNase1L2 Degrades Nuclear DNA during Corneocyte Formation. Journal of Investigative Dermatology, 2007, 127, 24-30.	0.7	65
25	Terminal differentiation of nail matrix keratinocytes involves up-regulation of DNase1L2 but is independent of caspase-14 expression. Differentiation, 2007, 75, 939-946.	1.9	29
26	DNase1L2 suppresses biofilm formation by Pseudomonas aeruginosa and Staphylococcus aureus. British Journal of Dermatology, 2007, 156, 1342-1345.	1.5	86
27	Caspase-14 but not caspase-3 is processed during the development of fetal mouse epidermis. Differentiation, 2005, 73, 406-413.	1.9	41
28	Identification and Characterization of a Novel Mammalian Caspase with Proapoptotic Activity. Journal of Biological Chemistry, 2005, 280, 35077-35080.	3.4	50
29	Stratum corneum-derived caspase-14 is catalytically active. FEBS Letters, 2004, 577, 446-450.	2.8	50
30	Human caspase 12 has acquired deleterious mutations. Biochemical and Biophysical Research Communications, 2002, 293, 722-726.	2.1	320
31	Differential Expression of a Novel Gene in Response to hsp27 and Cell Differentiation in Human Keratinocytes. Journal of Investigative Dermatology, 2002, 119, 154-159.	0.7	16
32	Alternative Splicing of Caspase-8 mRNA during Differentiation of Human Leukocytes. Biochemical and Biophysical Research Communications, 2001, 289, 777-781.	2.1	26
33	Caspase-14: Analysis of Gene Structure and mRNA Expression during Keratinocyte Differentiation. Biochemical and Biophysical Research Communications, 2000, 277, 655-659.	2.1	393