Andrea Franzetti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7793610/publications.pdf

Version: 2024-02-01

114 papers 5,409 citations

94433 37 h-index 70 g-index

122 all docs 122 docs citations

times ranked

122

6408 citing authors

#	Article	IF	CITATIONS
1	Microbial biosurfactants production, applications and future potential. Applied Microbiology and Biotechnology, 2010, 87, 427-444.	3.6	1,193
2	First evidence of microplastic contamination in the supraglacial debris of an alpine glacier. Environmental Pollution, 2019, 253, 297-301.	7.5	230
3	Production and applications of trehalose lipid biosurfactants. European Journal of Lipid Science and Technology, 2010, 112, 617-627.	1.5	218
4	The Interaction between Plants and Bacteria in the Remediation of Petroleum Hydrocarbons: An Environmental Perspective. Frontiers in Microbiology, 2016, 7, 1836.	3.5	176
5	Temporal variability and effect of environmental variables on airborne bacterial communities in an urban area of Northern Italy. Applied Microbiology and Biotechnology, 2013, 97, 6561-6570.	3.6	165
6	Unravelling the bacterial diversity in the atmosphere. Applied Microbiology and Biotechnology, 2013, 97, 4727-4736.	3.6	138
7	Electrobioremediation of oil spills. Water Research, 2017, 114, 351-370.	11.3	119
8	Seasonal variability of bacteria in fine and coarse urban air particulate matter. Applied Microbiology and Biotechnology, 2011, 90, 745-753.	3.6	115
9	Potential applications of surface active compounds by Gordonia sp. strain BS29 in soil remediation technologies. Chemosphere, 2009, 75, 801-807.	8.2	102
10	Spatio-temporal variability of airborne bacterial communities and their correlation with particulate matter chemical composition across two urban areas. Applied Microbiology and Biotechnology, 2015, 99, 4867-4877.	3.6	88
11	Season linked responses to fine and quasi-ultrafine Milan PM in cultured cells. Toxicology in Vitro, 2013, 27, 551-559.	2.4	87
12	Surface-active compounds and their role in the access to hydrocarbons in Gordonia strains. FEMS Microbiology Ecology, 2008, 63, 238-248.	2.7	84
13	Influence of compost amendment on microbial community and ecotoxicity of hydrocarbon-contaminated soils. Bioresource Technology, 2010, 101, 568-575.	9.6	81
14	Influence of seasonality, air mass origin and particulate matter chemical composition on airborne bacterial community structure in the Po Valley, Italy. Science of the Total Environment, 2017, 593-594, 677-687.	8.0	81
15	Environmental features of two commercial surfactants widely used in soil remediation. Chemosphere, 2006, 62, 1474-1480.	8.2	76
16	Anodes Stimulate Anaerobic Toluene Degradation via Sulfur Cycling in Marine Sediments. Applied and Environmental Microbiology, 2016, 82, 297-307.	3.1	74
17	Applications of Biological Surface Active Compounds in Remediation Technologies. Advances in Experimental Medicine and Biology, 2010, 672, 121-134.	1.6	68
18	Investigation of different configurations of microbial fuel cells for the treatment of oilfield produced water. Applied Energy, 2017, 192, 457-465.	10.1	67

#	Article	IF	Citations
19	Thermophilic bacteria in cool temperate soils: are they metabolically active or continually added by global atmospheric transport?. Applied Microbiology and Biotechnology, 2008, 78, 841-852.	3.6	64
20	Bacterial community structure on two alpine debris-covered glaciers and biogeography of <i>Polaromonas</i> phylotypes. ISME Journal, 2013, 7, 1483-1492.	9.8	63
21	Isolation and characterisation of surface active compound-producing bacteria from hydrocarbon-contaminated environments. International Biodeterioration and Biodegradation, 2009, 63, 936-942.	3.9	62
22	Environmental fate, toxicity, characteristics and potential applications of novel bioemulsifiers produced by Variovorax paradoxus 7bCT5. Bioresource Technology, 2012, 108, 245-251.	9.6	59
23	Anodic and cathodic microbial communities in single chamber microbial fuel cells. New Biotechnology, 2015, 32, 79-84.	4.4	59
24	<i>In situ</i> downstream strategies for costâ€effective bio/surfactant recovery. Biotechnology and Applied Biochemistry, 2018, 65, 523-532.	3.1	58
25	Bacterial DGGE fingerprints of biofilms on electrodes of membraneless microbial fuel cells. International Biodeterioration and Biodegradation, 2013, 84, 211-219.	3.9	55
26	Effect of preservation method on the assessment of bacterial community structure in soil and water samples. FEMS Microbiology Letters, 2014, 356, 32-38.	1.8	50
27	Selection of surfactants for enhancing diesel hydrocarbons-contaminated media bioremediation. Journal of Hazardous Materials, 2008, 152, 1309-1316.	12.4	48
28	The bioelectric well: a novel approach for <i>inÂsitu</i> treatment of hydrocarbonâ€contaminated groundwater. Microbial Biotechnology, 2018, 11, 112-118.	4.2	48
29	Bioremediation of Diethylhexyl Phthalate Contaminated Soil:Â A Feasibility Study in Slurry- and Solid-Phase Reactors. Environmental Science & Environm	10.0	47
30	Light-dependent microbial metabolisms drive carbon fluxes on glacier surfaces. ISME Journal, 2016, 10, 2984-2988.	9.8	47
31	Bioelectrochemical BTEX removal at different voltages: assessment of the degradation and characterization of the microbial communities. Journal of Hazardous Materials, 2018, 341, 120-127.	12.4	47
32	Glacier algae foster ice-albedo feedback in the European Alps. Scientific Reports, 2020, 10, 4739.	3.3	46
33	Naphthalene biodegradation kinetics in an aerobic slurry-phase bioreactor. Environment International, 2005, 31, 167-171.	10.0	45
34	A non-toxic microbial surfactant from Marinobacter hydrocarbonoclasticus SdK644 for crude oil solubilization enhancement. Ecotoxicology and Environmental Safety, 2018, 154, 100-107.	6.0	43
35	Cultural factors affecting biosurfactant production by Gordonia sp. BS29. International Biodeterioration and Biodegradation, 2009, 63, 943-947.	3.9	41
36	Bacterial communities of cryoconite holes of a temperate alpine glacier show both seasonal trends and year-to-year variability. Annals of Glaciology, 2018, 59, 1-9.	1.4	41

#	Article	IF	Citations
37	Topsoil organic matter buildâ€up in glacier forelands around the world. Global Change Biology, 2021, 27, 1662-1677.	9.5	41
38	Potential sources of bacteria colonizing the cryoconite of an Alpine glacier. PLoS ONE, 2017, 12, e0174786.	2.5	41
39	Mechanical and rheological properties of natural rubber compounds containing devulcanized ground tire rubber from several methods. Polymer Degradation and Stability, 2015, 121, 369-377.	5.8	40
40	Characterization of the Skin Microbiota in Italian Stream Frogs (<i>Rana italica</i>) Infected and Uninfected by a Cutaneous Parasitic Disease. Microbes and Environments, 2015, 30, 262-269.	1.6	38
41	Hydrocarbon degrading microbial communities in bench scale aerobic biobarriers for gasoline contaminated groundwater treatment. Chemosphere, 2015, 130, 34-39.	8.2	38
42	Airborne bacteria and persistent organic pollutants associated with an intense Saharan dust event in the Central Mediterranean. Science of the Total Environment, 2018, 645, 401-410.	8.0	38
43	Shift in microbial community structure of anaerobic side-stream reactor in response to changes to anaerobic solid retention time and sludge interchange ratio. Bioresource Technology, 2016, 221, 588-597.	9.6	35
44	Diversity and hydrocarbon-degrading potential of epiphytic microbial communities on Platanus x acerifolia leaves in an urban area. Environmental Pollution, 2017, 220, 650-658.	7.5	35
45	Cryoconite: an efficient accumulator of radioactive fallout in glacial environments. Cryosphere, 2020, 14, 657-672.	3.9	32
46	Lab-scale tests and numerical simulations for in situ treatment of polluted groundwater. Journal of Hazardous Materials, 2015, 287, 162-170.	12.4	31
47	Recent trends and advances in microbial electrochemical sensing technologies: An overview. Current Opinion in Electrochemistry, 2021, 30, 100762.	4.8	31
48	So close, so different: geothermal flux shapes divergent soil microbial communities at neighbouring sites. Geobiology, 2016, 14, 150-162.	2.4	30
49	Biological devulcanization of ground natural rubber by Gordonia desulfuricans DSM 44462T strain. Applied Microbiology and Biotechnology, 2016, 100, 8931-8942.	3.6	30
50	Bacteria contribute to pesticide degradation in cryoconite holes in an Alpine glacier. Environmental Pollution, 2017, 230, 919-926.	7.5	29
51	Plant-microorganisms interaction promotes removal of air pollutants in Milan (Italy) urban area. Journal of Hazardous Materials, 2020, 384, 121021.	12.4	29
52	Cryoconite – From minerals and organic matter to bioengineered sediments on glacier's surfaces. Science of the Total Environment, 2022, 807, 150874.	8.0	29
53	Biosurfactant Use in Heavy Metal Removal from Industrial Effluents and Contaminated Sites. , 2014, , 361-370.		28
54	Diversity and Assembling Processes of Bacterial Communities in Cryoconite Holes of a Karakoram Glacier. Microbial Ecology, 2017, 73, 827-837.	2.8	28

#	Article	IF	CITATIONS
55	Persistence and degrading activity of free and immobilised allochthonous bacteria during bioremediation of hydrocarbon-contaminated soils. Biodegradation, 2013, 24, 1-11.	3.0	27
56	Water bears dominated cryoconite hole ecosystems: densities, habitat preferences and physiological adaptations of Tardigrada on an alpine glacier. Aquatic Ecology, 2019, 53, 543-556.	1.5	25
57	Cloacal microbiomes and ecology of individual barn swallows. FEMS Microbiology Ecology, 2019, 95, .	2.7	25
58	Microbial desulfurization of ground tire rubber (GTR): Characterization of microbial communities and rheological and mechanical properties of GTR and natural rubber composites (GTR/NR). Polymer Degradation and Stability, 2019, 160, 102-109.	5.8	25
59	Reconstructing ecosystem functions of the active microbial community of the Baltic Sea oxygen depleted sediments. PeerJ, 2016, 4, e1593.	2.0	25
60	Bioelectrochemical treatment of groundwater containing BTEX in a continuous-flow system: Substrate interactions, microbial community analysis, and impact of sulfate as a co-contaminant. New Biotechnology, 2019, 53, 41-48.	4.4	24
61	Potentials of Winery and Olive Oil Residues for the Production of Rhamnolipids and Other Biosurfactants: A Step Towards Achieving a Circular Economy Model. Waste and Biomass Valorization, 2021, 12, 4733-4743.	3.4	24
62	Slurry phase bioremediation of PAHs in industrial landfill samples at laboratory scale. Waste Management, 2008, 28, 1338-1345.	7.4	23
63	Antibiotic resistance in bacteria associated with coarse atmospheric particulate matter in an urban area. Journal of Applied Microbiology, 2011, 110, 1612-1620.	3.1	22
64	Effects of Olive and Pomegranate By-Products on Human Microbiota: A Study Using the SHIME® in Vitro Simulator. Molecules, 2019, 24, 3791.	3.8	22
65	Monitoring of electro-active biofilm in soil. Electrochimica Acta, 2008, 54, 41-46.	5.2	21
66	Temporal variability of bacterial communities in cryoconite on an alpine glacier. Environmental Microbiology Reports, 2017, 9, 71-78.	2.4	21
67	Nematodes and rotifers on two Alpine debris-covered glaciers. Italian Journal of Zoology, 2015, 82, 616-623.	0.6	18
68	Anaerobic electrogenic oxidation of toluene in a continuous-flow bioelectrochemical reactor: process performance, microbial community analysis, and biodegradation pathways. Environmental Science: Water Research and Technology, 2018, 4, 2136-2145.	2.4	18
69	Every fifth published metagenome is not available to science. PLoS Biology, 2020, 18, e3000698.	5.6	18
70	Microbial Assisted Hexavalent Chromium Removal in Bioelectrochemical Systems. Water (Switzerland), 2020, 12, 466.	2.7	17
71	Characterization of long-range transported bioaerosols in the Central Mediterranean. Science of the Total Environment, 2021, 763, 143010.	8.0	17
72	Trophic and symbiotic links between obligate-glacier water bears (Tardigrada) and cryoconite microorganisms. PLoS ONE, 2022, 17, e0262039.	2.5	17

#	Article	IF	Citations
73	Insights into rhamnolipid-based soil remediation technologies by safe microorganisms: A critical review. Journal of Cleaner Production, 2022, 367, 133088.	9.3	17
74	Bioremediation of Diesel Fuel Contaminated Soil: Effect of Non Ionic Surfactants and Selected Bacteria Addition. Annali Di Chimica, 2007, 97, 799-805.	0.6	16
75	Bacterial diversity in snow from mid-latitude mountain areas: Alps, Eastern Anatolia, Karakoram and Himalaya. Annals of Glaciology, 2018, 59, 10-20.	1.4	16
76	Structure and Functions of Hydrocarbon-Degrading Microbial Communities in Bioelectrochemical Systems. Water (Switzerland), 2020, 12, 343.	2.7	16
77	Progress Towards Bioelectrochemical Remediation of Hexavalent Chromium. Water (Switzerland), 2019, 11, 2336.	2.7	15
78	Persistence of Enterobacteriaceae Drawn into a Marine Saltern (Saline di Tarquinia, Italy) from the Adjacent Coastal Zone. Water (Switzerland), 2021, 13, 1443.	2.7	15
79	Phylogenetic characterization of bioemulsifier-producing bacteria. International Biodeterioration and Biodegradation, 2011, 65, 1095-1099.	3.9	14
80	Toluene degradation by Cupriavidus metallidurans CH34 in nitrate-reducing conditions and in Bioelectrochemical Systems. FEMS Microbiology Letters, 2018, 365, .	1.8	14
81	<i>Vibrio</i> communities along a salinity gradient within a marine saltern hypersaline environment (Saline di Tarquinia, Italy). Environmental Microbiology, 2020, 22, 4356-4366.	3.8	14
82	Burkholderia thailandensis E264 as a promising safe rhamnolipids' producer towards a sustainable valorization of grape marcs and olive mill pomace. Applied Microbiology and Biotechnology, 2021, 105, 3825-3842.	3.6	13
83	The Retreat of Mountain Glaciers since the Little Ice Age: A Spatially Explicit Database. Data, 2021, 6, 107.	2.3	13
84	Draft Genome Sequence of <i>Arthrobacter</i> sp. Strain SPG23, a Hydrocarbon-Degrading and Plant Growth-Promoting Soil Bacterium. Genome Announcements, 2015, 3, .	0.8	12
85	Spatio-Temporal Variation of the Bacterial Communities along a Salinity Gradient within a Thalassohaline Environment (Saline di Tarquinia Salterns, Italy). Molecules, 2021, 26, 1338.	3.8	12
86	Monod Kinetics Degradation of Low Concentration Residual Organics in Membraneless Microbial Fuel Cells. Journal of the Electrochemical Society, 2017, 164, H3091-H3096.	2.9	11
87	37Cl-compound specific isotope analysis and assessment of functional genes for monitoring monochlorobenzene (MCB) biodegradation under aerobic conditions. Science of the Total Environment, 2018, 619-620, 784-793.	8.0	11
88	Post-Depositional Biodegradation Processes of Pollutants on Glacier Surfaces. Condensed Matter, 2018, 3, 24.	1.8	11
89	Fine-scale spatial heterogeneity of invertebrates within cryoconite holes. Aquatic Ecology, 2019, 53, 179-190.	1.5	11
90	Anode potential selection for sulfide removal in contaminated marine sediments. Journal of Hazardous Materials, 2018, 360, 498-503.	12.4	8

#	Article	IF	CITATIONS
91	Evaluation of Pre-Analytical and Analytical Methods for Detecting SARS-CoV-2 in Municipal Wastewater Samples in Northern Italy. Water (Switzerland), 2022, 14, 833.	2.7	8
92	Draft Genome Sequence of Acinetobacter oleivorans PF1, a Diesel-Degrading and Plant-Growth-Promoting Endophytic Strain Isolated from Poplar Trees Growing on a Diesel-Contaminated Plume. Genome Announcements, 2015, 3, .	0.8	7
93	Application of a 1,1,3,3-tetramethylguanidine (TMG)/MeOH-CO2 in situ derivatization procedure for the gas chromatographic characterization of the fatty acid profile in olive oil. Analytical and Bioanalytical Chemistry, 2015, 407, 1801-1806.	3.7	7
94	Cloacal microbiota of barn swallows from Northern Italy. Ethology Ecology and Evolution, 2018, 30, 362-372.	1.4	7
95	Effects of locality and stone surface structure on the distribution of Collembola inhabiting a novel habitat – the stone-ice border on an alpine glacier. Acta Oecologica, 2020, 108, 103629.	1.1	6
96	Characterization of the microbial community in ripened Pecorino Toscano cheese affected by pink discoloration. Food Microbiology, 2022, 104, 104006.	4.2	6
97	In vitro effects of microbiologically characterized Milan particulate matter. Procedia Environmental Sciences, 2011, 4, 192-197.	1.4	5
98	Ecological features of feather microbiota in breeding common swifts. Ethology Ecology and Evolution, 2018, 30, 569-581.	1.4	5
99	Thermophilic bacteria in cool soils: metabolic activity and mechanisms of dispersal., 2011,, 43-58.		4
100	Isolation and screening of surface active compound-producing bacteria on renewable substrates. , 2009, , .		4
101	Investigation of Physicho-chemical Properties and Characterization of Produced Biosurfactant by Selected Indigenous Oil-degrading Bacterium. Iranian Journal of Public Health, 2018, 47, 1151-1159.	0.5	4
102	Is Oxygenation Related to the Decomposition of Organic Matter in Cryoconite Holes?. Ecosystems, 2022, 25, 1510-1521.	3.4	4
103	Isolation and characterization of a novel rhamnolipid producer Pseudomonas sp. LGMS7 from a highly contaminated site in Ain El Arbaa region of Ain Temouchent, Algeria. 3 Biotech, 2021, 11, 200.	2.2	3
104	Remediation of groundwater polluted by gasoline-derived compounds with biobarriers. , 2012, , .		3
105	Bacterial Succession and Community Dynamics of the Emerging Leaf Phyllosphere in Spring. Microbiology Spectrum, 2022, 10, e0242021.	3.0	3
106	Fungal communities in European alpine soils are not affected by shortâ€ŧerm <i>in situ</i> simulated warming than bacterial communities. Environmental Microbiology, 0, , .	3.8	3
107	Bio-electrochemical Remediation of Petroleum Hydrocarbons. , 2020, , 269-285.		2
108	Bioelectrochemical Processes for the Treatment of Oil-Contaminated Water and Sediments. Applied Environmental Science and Engineering for A Sustainable Future, 2020, , 373-394.	0.5	2

7

#	Article	IF	CITATIONS
109	Biodegradation of N,N diethylaniline in a contaminated aquifer: laboratory- and field-scale evidences. Biodegradation, 2010, 21, 193-201.	3.0	1
110	Draft Genome Sequence of Acinetobacter calcoaceticus Strain GK1, a Hydrocarbon-Degrading Plant Growth-Promoting Rhizospheric Bacterium. Genome Announcements, 2015, 3, .	0.8	1
111	Integrated biological and chemical characterisation of a pair of leonardesque canal lock gates. PLoS ONE, 2021, 16, e0247478.	2.5	1
112	Enhanced Exoelectrogenic Activity of Cupriavidus metallidurans in Bioelectrochemical Systems through the Expression of a Constitutively Active Diguanylate Cyclase. Environments - MDPI, 2022, 9, 80.	3.3	1
113	Optimisation of emulsifier production by Gordonia spp. BS29. New Biotechnology, 2009, 25, S77.	4.4	O
114	Applications of Surface Active Compounds by $\langle i \rangle$ Gordonia $\langle i \rangle$ in bioremediation and washing of hydrocarbon-contaminated soils. , 2009, , .		0