Kaushik Ghosh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7793028/publications.pdf

Version: 2024-02-01

567281 677142 25 971 15 22 citations h-index g-index papers 25 25 25 1110 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Se-Incorporated Porous Carbon/Ni ₅ P ₄ Nanostructures for Electrocatalytic Hydrogen Evolution Reaction with Waste Heat Management. ACS Applied Nano Materials, 2022, 5, 1385-1396.	5.0	16
2	Strategy to Improve the Photovoltaic Performance of Si/CuO Heterojunction via Incorporation of Ta ₂ O ₅ Hopping Layer and MXene as Transparent Electrode. ACS Applied Energy Materials, 2022, 5, 3941-3951.	5.1	8
3	Super-Hydrophilic Leaflike Sn ₄ P ₃ on the Porous Seamless Graphene–Carbon Nanotube Heterostructure as an Efficient Electrocatalyst for Solar-Driven Overall Water Splitting. ACS Nano, 2022, 16, 4861-4875.	14.6	41
4	Boosting the Supercapacitive Performance <i>via</i> Incorporation of Vanadium in Nickel Phosphide Nanoflakes: A High-Performance Flexible Renewable Energy Storage Device. Energy & Energy \$4076-4086.	5.1	13
5	Strategy to improve the super-capacitive and hydrogen evolution performance of graphitic carbon nitrides via enrichment of carbon content. Journal of Alloys and Compounds, 2021, 858, 157671.	5.5	9
6	Large Area Graphene and Their Use as Flexible Touchscreens. Advances in Sustainability Science and Technology, 2021, , 285-305.	0.6	0
7	Super-Hydrophilic Hierarchical Ni-Foam-Graphene-Carbon Nanotubes-Ni∢sub>2∢/sub>P–CuP∢sub>2∢/sub> Nano-Architecture as Efficient Electrocatalyst for Overall Water Splitting. ACS Nano, 2021, 15, 5586-5599.	14.6	216
8	Bimetallic Phosphides for Hybrid Supercapacitors. Journal of Physical Chemistry Letters, 2021, 12, 5138-5149.	4.6	42
9	In-Situ Growth of Urchin Manganese Sulfide Anchored Three-Dimensional Graphene (Î ³ -MnS@3DG) on Carbon Cloth as a Flexible Asymmetric Supercapacitor. Journal of Physical Chemistry Letters, 2021, 12, 6574-6581.	4.6	29
10	p–i–n silicon nanowire array–NGQD: a metal-free electrocatalyst for the photoelectrochemical hydrogen evolution. Sustainable Energy and Fuels, 2021, 5, 3160-3171.	4.9	9
11	Silicon nanowire–Ta ₂ O ₅ –NGQD heterostructure: an efficient photocathode for photoelectrochemical hydrogen evolution. Sustainable Energy and Fuels, 2021, 6, 197-208.	4.9	14
12	3Dâ€Graphene Decorated with gâ€C ₃ N ₄ /Cu ₃ P Composite: A Noble Metalâ€free Bifunctional Electrocatalyst for Overall Water Splitting. ChemCatChem, 2020, 12, 1394-1402.	3.7	71
13	Three-Dimensional Graphene-Decorated Copper-Phosphide (Cu3P@3DG) Heterostructure as an Effective Electrode for a Supercapacitor. Frontiers in Materials, 2020, 7, .	2.4	26
14	Linear piezoresistive strain sensor based on graphene/g-C ₃ N ₄ /PDMS heterostructure. Nanotechnology, 2020, 31, 295501.	2.6	35
15	3D-Ni-foam/graphene heterostructure decorated with g-C3N4composite: A noble-metal free electrocatalyst for hydrogen evolution reaction. AIP Conference Proceedings, 2020, , .	0.4	O
16	3D-Ni-foam/graphene heterostructure decorated with Cu3P composite: A noble-metal free electrocatalyst for hydrogen evolution reaction. AIP Conference Proceedings, 2020, , .	0.4	0
17	Catalytic synthesis of benzimidazoles and organic carbamates using a polymer supported zinc catalyst through CO ₂ fixation. New Journal of Chemistry, 2019, 43, 14643-14652.	2.8	37
18	Chitosan-Graphene Oxide Hydrogels with Embedded Magnetic Iron Oxide Nanoparticles for Dye Removal. ACS Applied Nano Materials, 2019, 2, 7379-7392.	5.0	103

#	Article	IF	CITATIONS
19	Polymer-incarcerated palladium-catalyzed facile <i>in situ</i> carbonylation for the synthesis of aryl aldehydes and diaryl ketones using CO surrogates under ambient conditions. New Journal of Chemistry, 2019, 43, 9802-9814.	2.8	7
20	Study of field emission properties of pure graphene-CNT heterostructures connected via seamless interface. Nanotechnology, 2019, 30, 385702.	2.6	27
21	Polymer immobilized [Mg@PS-anthra] complex: An efficient recyclable heterogeneous catalyst for the incorporation of carbon dioxide into oxiranes at atmospheric pressure and Knoevenagel condensation reaction under solvent free condition. Journal of Organometallic Chemistry, 2019, 880, 322-332.	1.8	21
22	Modified surfaces using seamless graphene/carbon nanotubes based nanostructures for enhancing pool boiling heat transfer. Experimental Thermal and Fluid Science, 2018, 96, 493-506.	2.7	58
23	Synthesis and architecture of polystyrene-supported Schiff base-palladium complex: Catalytic features and functions in diaryl urea preparation in conjunction with Suzuki-Miyaura cross-coupling reaction by reductive carbonylation. Journal of Organometallic Chemistry, 2018, 877, 37-50.	1.8	14
24	Three-dimensional Graphene with MoS 2 Nanohybrid as Potential Energy Storage/Transfer Device. Scientific Reports, 2017, 7, 9458.	3.3	53
25	Tailoring the field emission property of nitrogen-doped carbon nanotubes by controlling the graphitic/pyridinic substitution. Carbon, 2010, 48, 191-200.	10.3	122