List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7792673/publications.pdf Version: 2024-02-01

IOSHI I ALLIMKAL

#	Article	IF	CITATIONS
1	Identifying phenotype-associated subpopulations by integrating bulk and single-cell sequencing data. Nature Biotechnology, 2022, 40, 527-538.	17.5	128
2	Modeling Androgen Deprivation Therapy–Induced Prostate Cancer Dormancy and Its Clinical Implications. Molecular Cancer Research, 2022, 20, 782-793.	3.4	10
3	Tribbles 2 pseudokinase confers enzalutamide resistance in prostate cancer by promoting lineage plasticity. Journal of Biological Chemistry, 2022, 298, 101556.	3.4	4
4	Multigene Profiling of Circulating Tumor Cells (CTCs) for Prognostic Assessment in Treatment-NaÃ ⁻ ve Metastatic Hormone-Sensitive Prostate Cancer (mHSPC). International Journal of Molecular Sciences, 2022, 23, 4.	4.1	6
5	Understanding Drug Sensitivity and Tackling Resistance in Cancer. Cancer Research, 2022, 82, 1448-1460.	0.9	24
6	A CHIP in the Armor of Cell-Free DNA–Based Predictive Biomarkers for Prostate Cancer. JAMA Oncology, 2021, 7, 111.	7.1	2
7	De novo neuroendocrine transdifferentiation in primary prostate cancer–a phenotype associated with advanced clinico-pathologic features and aggressive outcome. Medical Oncology, 2021, 38, 26.	2.5	18
8	BET Bromodomain Inhibition Blocks an AR-Repressed, E2F1-Activated Treatment-Emergent Neuroendocrine Prostate Cancer Lineage Plasticity Program. Clinical Cancer Research, 2021, 27, 4923-4936.	7.0	33
9	Recent Advances in Epigenetic Biomarkers and Epigenetic Targeting in Prostate Cancer. European Urology, 2021, 80, 71-81.	1.9	35
10	RNA Splicing Factors SRRM3 and SRRM4 Distinguish Molecular Phenotypes of Castration-Resistant Neuroendocrine Prostate Cancer. Cancer Research, 2021, 81, 4736-4750.	0.9	18
11	The heterogeneity of prostate cancers lacking AR activity will require diverse treatment approaches. Endocrine-Related Cancer, 2021, 28, T51-T66.	3.1	28
12	Prognosis Associated With Luminal and Basal Subtypes of Metastatic Prostate Cancer. JAMA Oncology, 2021, 7, 1644.	7.1	21
13	Germline polymorphisms associated with impaired survival outcomes and somatic tumor alterations in advanced prostate cancer. Prostate Cancer and Prostatic Diseases, 2020, 23, 316-323.	3.9	6
14	The DNA methylation landscape of advanced prostate cancer. Nature Genetics, 2020, 52, 778-789.	21.4	198
15	A Phase Ib/IIa Study of the Pan-BET Inhibitor ZEN-3694 in Combination with Enzalutamide in Patients with Metastatic Castration-resistant Prostate Cancer. Clinical Cancer Research, 2020, 26, 5338-5347.	7.0	76
16	Copy Number Loss of 17q22 Is Associated with Enzalutamide Resistance and Poor Prognosis in Metastatic Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2020, 26, 4616-4624.	7.0	10
17	Autoantibody Landscape in Patients with Advanced Prostate Cancer. Clinical Cancer Research, 2020, 26, 6204-6214.	7.0	10
18	Enzalutamide response in a panel of prostate cancer cell lines reveals a role for glucocorticoid receptor in enzalutamide resistant disease. Scientific Reports, 2020, 10, 21750.	3.3	34

#	Article	IF	CITATIONS
19	Transcriptional profiling identifies an androgen receptor activity-low, stemness program associated with enzalutamide resistance. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12315-12323.	7.1	87
20	Alternative splicing of LSD1+8a in neuroendocrine prostate cancer is mediated by SRRM4. Neoplasia, 2020, 22, 253-262.	5.3	19
21	Down-regulation of ADRB2 expression is associated with small cell neuroendocrine prostate cancer and adverse clinical outcomes in castration-resistant prostate cancer. Urologic Oncology: Seminars and Original Investigations, 2020, 38, 931.e9-931.e16.	1.6	4
22	Double-Negative Prostate Cancer Masquerading as a Squamous Cancer of Unknown Primary: A Clinicopathologic and Genomic Sequencing-Based Case Study. JCO Precision Oncology, 2020, 4, 1386-1392.	3.0	4
23	Reversal of the Warburg phenomenon in chemoprevention of prostate cancer by sulforaphane. Carcinogenesis, 2019, 40, 1545-1556.	2.8	21
24	Multi-Omics Analyses Detail Metabolic Reprogramming in Lipids, Carnitines, and Use of Glycolytic Intermediates between Prostate Small Cell Neuroendocrine Carcinoma and Prostate Adenocarcinoma. Metabolites, 2019, 9, 82.	2.9	27
25	BET bromodomain inhibition blocks the function of a critical AR-independent master regulator network in lethal prostate cancer. Oncogene, 2019, 38, 5658-5669.	5.9	23
26	Whole-Genome and Transcriptional Analysis of Treatment-Emergent Small-Cell Neuroendocrine Prostate Cancer Demonstrates Intraclass Heterogeneity. Molecular Cancer Research, 2019, 17, 1235-1240.	3.4	51
27	Maintenance of MYC expression promotes de novo resistance to BET bromodomain inhibition in castration-resistant prostate cancer. Scientific Reports, 2019, 9, 3823.	3.3	32
28	Reply to A. Dalla Volta et al. Journal of Clinical Oncology, 2019, 37, 351-352.	1.6	0
29	Genomic Drivers of Poor Prognosis and Enzalutamide Resistance in Metastatic Castration-resistant Prostate Cancer. European Urology, 2019, 76, 562-571.	1.9	104
30	MEK-ERK signaling is a therapeutic target in metastatic castration resistant prostate cancer. Prostate Cancer and Prostatic Diseases, 2019, 22, 531-538.	3.9	66
31	Epigenetic Therapy with Panobinostat Combined with Bicalutamide Rechallenge in Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2019, 25, 52-63.	7.0	44
32	Abstract CT095: A Phase Ib/IIa study of the BET bromodomain inhibitor ZEN-3694 in combination with enzalutamide in patients with metastatic castration-resistant prostate cancer (mCRPC). Cancer Research, 2019, 79, CT095-CT095.	0.9	5
33	LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4179-E4188.	7.1	160
34	Clinical and Genomic Characterization of Treatment-Emergent Small-Cell Neuroendocrine Prostate Cancer: A Multi-institutional Prospective Study. Journal of Clinical Oncology, 2018, 36, 2492-2503.	1.6	477
35	Genomic Hallmarks and Structural Variation in Metastatic Prostate Cancer. Cell, 2018, 174, 758-769.e9.	28.9	459
36	CT–Guided Bone Biopsies in Metastatic Castration-Resistant Prostate Cancer: Factors Predictive of Maximum Tumor Yield. Journal of Vascular and Interventional Radiology, 2017, 28, 1073-1081.e1.	0.5	30

#	Article	IF	CITATIONS
37	Effect of Visceral Disease Site on Outcomes in Patients With Metastatic Castration-resistant Prostate Cancer Treated With Enzalutamide in the PREVAIL Trial. Clinical Genitourinary Cancer, 2017, 15, 610-617.e3.	1.9	25
38	Concordance of Circulating Tumor DNA and Matched Metastatic Tissue Biopsy in Prostate Cancer. Journal of the National Cancer Institute, 2017, 109, .	6.3	288
39	Early evidence of anti-PD-1 activity in enzalutamide-resistant prostate cancer. Oncotarget, 2016, 7, 52810-52817.	1.8	305
40	Cellular androgen content influences enzalutamide agonism of F877L mutant androgen receptor. Oncotarget, 2016, 7, 40690-40703.	1.8	12
41	Epigenomic profiling of prostate cancer identifies differentially methylated genes in TMPRSS2:ERG fusion-positive versus fusion-negative tumors. Clinical Epigenetics, 2015, 7, 128.	4.1	35
42	Intermittent Chemotherapy as a Platform for Testing Novel Agents in Patients With Metastatic Castration-Resistant Prostate Cancer: A Department of Defense Prostate Cancer Clinical Trials Consortium Randomized Phase II Trial of Intermittent Docetaxel With Prednisone With or Without Maintenance GM-CSF. Clinical Genitourinary Cancer, 2015, 13, e191-e198.	1.9	9
43	A phase II study of sulforaphane-rich broccoli sprout extracts in men with recurrent prostate cancer. Investigational New Drugs, 2015, 33, 480-489.	2.6	170
44	Diagnostic and Prognostic Utility of a DNA Hypermethylated Gene Signature in Prostate Cancer. PLoS ONE, 2014, 9, e91666.	2.5	13
45	Immunohistochemical expression of ERG in the molecular epidemiology of fatal prostate cancer study. Prostate, 2013, 73, 1371-1377.	2.3	7
46	Androgen Receptor Promotes Ligand-Independent Prostate Cancer Progression through c-Myc Upregulation. PLoS ONE, 2013, 8, e63563.	2.5	104
47	Distinct Epigenetic Mechanisms Distinguish <i>TMPRSS2–ERG</i> Fusion-Positive and -Negative Prostate Cancers. Cancer Discovery, 2012, 2, 979-981.	9.4	8
48	Ipilimumab (IPI) in metastatic castrate-resistant prostate cancer (mCRPC): Results from an open-label, multicenter phase I/II study Journal of Clinical Oncology, 2012, 30, 25-25.	1.6	11
49	A DNA methylation microarray-based study identifies ERG as a gene commonly methylated in prostate cancer. Epigenetics, 2011, 6, 1248-1256.	2.7	16
50	JAK and Jumonji: Deadly Playmates. Science Translational Medicine, 2011, 3, .	12.4	0
51	An Epigenetic Road to Genome Instability. Science Translational Medicine, 2011, 3, .	12.4	0
52	Epigenetic regulation of androgen receptor signaling in prostate cancer. Epigenetics, 2010, 5, 100-104.	2.7	63
53	Emerging Therapies in Castrate-Resistant Prostate Cancer. Current Urology Reports, 2010, 11, 152-158.	2.2	20
54	Antitumour activity of MDV3100 in castration-resistant prostate cancer: a phase 1–2 study. Lancet, The, 2010. 375. 1437-1446.	13.7	972

#	Article	IF	CITATIONS
55	Sinking Prostate Cancer from Under the Sea. Science Translational Medicine, 2010, 2, .	12.4	Ο
56	<i>TMPRSS2-ERG</i> , a Mover and a Shaker. Science Translational Medicine, 2010, 2, .	12.4	0
57	Precious Metals. Science Translational Medicine, 2010, 2, .	12.4	0
58	Abrogating Angiogenesis Just Got EZier. Science Translational Medicine, 2010, 2, .	12.4	0
59	Reducing the UnSIRTainty of Alzheimer's Disease. Science Translational Medicine, 2010, 2, .	12.4	Ο
60	A New "Fix―for Cancer. Science Translational Medicine, 2010, 2, .	12.4	0
61	An Expanded Tumor Playing Field. Science Translational Medicine, 2010, 2, .	12.4	Ο
62	Turning Off the Cancer Switch. Science Translational Medicine, 2010, 2, .	12.4	0
63	Drugging Bugs to Make Chemotherapy Safer. Science Translational Medicine, 2010, 2, .	12.4	Ο
64	Thinking Outside the Box in Prostate Cancer. Science Translational Medicine, 2010, 2, .	12.4	0
65	Sulforaphane destabilizes the androgen receptor in prostate cancer cells by inactivating histone deacetylase 6. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16663-16668.	7.1	155
66	Effect of DNA Methylation on Identification of Aggressive Prostate Cancer. Urology, 2008, 72, 1234-1239.	1.0	46
67	The Role of Epigenetic Change in Therapy-Induced Neuroendocrine Prostate Cancer Lineage Plasticity. Frontiers in Endocrinology, 0, 13, .	3.5	9