
Laura Denby

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7792514/publications.pdf Version: 2024-02-01

LALIDA DENRY

#	Article	IF	CITATIONS
1	MicroRNAs and their delivery in diabetic fibrosis. Advanced Drug Delivery Reviews, 2022, 182, 114045.	6.6	17
2	Sonoporation of Human Renal Proximal Tubular Epithelial Cells In Vitro to Enhance the Liberation of Intracellular miRNA Biomarkers. Ultrasound in Medicine and Biology, 2022, 48, 1019-1032.	0.7	2
3	MicroRNAs as non-invasive biomarkers of renal disease. Nephrology Dialysis Transplantation, 2021, 36, 428-429.	0.4	18
4	MIR503HG Loss Promotes Endothelial-to-Mesenchymal Transition in Vascular Disease. Circulation Research, 2021, 128, 1173-1190.	2.0	41
5	<i>CARMN</i> Loss Regulates Smooth Muscle Cells and Accelerates Atherosclerosis in Mice. Circulation Research, 2021, 128, 1258-1275.	2.0	47
6	MO097BETA BLOCKER PREVENTS CARDIAC MOLECULAR AND MORPHOLOGICAL REMODELLING IN EXPERIMENTAL URAEMIA. Nephrology Dialysis Transplantation, 2021, 36, .	0.4	0
7	Myeloid Heterogeneity in Kidney Disease as Revealed through Single-Cell RNA Sequencing. Kidney360, 2021, 2, 1844-1851.	0.9	4
8	Kidney Single-Cell Atlas Reveals Myeloid Heterogeneity in Progression and Regression of Kidney Disease. Journal of the American Society of Nephrology: JASN, 2020, 31, 2833-2854.	3.0	113
9	Transfer of hepatocellular microRNA regulates cytochrome P450 2E1 in renal tubular cells. EBioMedicine, 2020, 62, 103092.	2.7	11
10	Endothelin-1 Mediates the Systemic and Renal Hemodynamic Effects of GPR81 Activation. Hypertension, 2020, 75, 1213-1222.	1.3	15
11	T-Cell–Derived miRNA-214 Mediates Perivascular Fibrosis in Hypertension. Circulation Research, 2020, 126, 988-1003.	2.0	59
12	Stromal Cells Covering Omental Fat-Associated Lymphoid Clusters Trigger Formation of Neutrophil Aggregates to Capture Peritoneal Contaminants. Immunity, 2020, 52, 700-715.e6.	6.6	53
13	Identifying cell-enriched miRNAs in kidney injury and repair. JCI Insight, 2020, 5, .	2.3	19
14	T Cell-Derived Mirna-214 Controls Perivascular Fibrosis In Hypertension. Atherosclerosis, 2019, 287, e48-e49.	0.4	0
15	Extracellular vesicle cross-talk between pulmonary artery smooth muscle cells and endothelium during excessive TGF-β signalling: implications for PAH vascular remodelling. Cell Communication and Signaling, 2019, 17, 143.	2.7	41
16	Refining the Mouse Subtotal Nephrectomy in Male 129S2/SV Mice for Consistent Modeling of Progressive Kidney Disease With Renal Inflammation and Cardiac Dysfunction. Frontiers in Physiology, 2019, 10, 1365.	1.3	11
17	The function of miR-143, miR-145 and the MiR-143 host gene in cardiovascular development and disease. Vascular Pharmacology, 2019, 112, 24-30.	1.0	77
18	Urinary angiotensinogen as a biomarker for acute to chronic kidney injury transition – prognostic and mechanistic implications. Clinical Science, 2018, 132, 2383-2385.	1.8	4

LAURA DENBY

#	Article	IF	CITATIONS
19	Deleterious effects of phosphate on vascular and endothelial function via disruption to the nitric oxide pathway. Nephrology Dialysis Transplantation, 2017, 32, gfw252.	0.4	40
20	Relationship between circulating microRNA-30c with total- and LDL-cholesterol, their circulatory transportation and effect of statins. Clinica Chimica Acta, 2017, 466, 13-19.	0.5	16
21	Defining a Novel Role for the Coxsackievirus and Adenovirus Receptor in Human Adenovirus Serotype 5 Transduction <i>In Vitro</i> in the Presence of Mouse Serum. Journal of Virology, 2017, 91, .	1.5	12
22	191â€Role of mir-214 in angiotensin ii induced hypertensive heart disease. Heart, 2017, 103, A130.2-A131.	1.2	0
23	Abstract 060: Role of Mir-214 in the Regulation of Perivascular Fibrosis in Angiotensin II Induced Hypertension. Hypertension, 2017, 70, .	1.3	0
24	Wnt6: another player in the yin and yang of renal Wnt signaling. American Journal of Physiology - Renal Physiology, 2016, 311, F404-F405.	1.3	1
25	MP353SUSTAINED PHOSPHATE CAUSES ENDOTHELIAL DYSFUNCTION AND INCREASES VASCULAR STIFFNESS IN CKD PATIENTS. Nephrology Dialysis Transplantation, 2016, 31, i457-i457.	0.4	0
26	MP024EXPLORATION OF THE EFFECTS OF HYPERPHOSPHATAEMIA ON CARDIAC MYOCYTES IN-VITRO. Nephrology Dialysis Transplantation, 2016, 31, i349-i350.	0.4	0
27	Renal disease pathophysiology and treatment: contributions from the rat. DMM Disease Models and Mechanisms, 2016, 9, 1419-1433.	1.2	41
28	Targeting non-coding RNA for the therapy of renal disease. Current Opinion in Pharmacology, 2016, 27, 70-77.	1.7	26
29	Relationship between circulating microRNA-30c with lipoproteins, their circulatory trafficking and effect of statins. Atherosclerosis, 2016, 252, e81-e82.	0.4	0
30	Regulation and Function of miRâ€214Âin Pulmonary Arterial Hypertension. Pulmonary Circulation, 2016, 6, 109-117.	0.8	28
31	[OP.3D.02] MICRORNA-214 IS INVOLVED IN THE REGULATION OF PERIVASCULAR FIBROSIS IN HYPERTENSION. Journal of Hypertension, 2016, 34, e33.	0.3	0
32	The relationship between circulating microRNA and lipid indices. Atherosclerosis, 2016, 245, e248.	0.4	1
33	Circulating microRNA-30C is associated with total- and LDL-cholesterol. Atherosclerosis, 2015, 241, e121.	0.4	0
34	MicroRNA-214 Antagonism Protects against Renal Fibrosis. Journal of the American Society of Nephrology: JASN, 2014, 25, 65-80.	3.0	132
35	The importance of coagulation factors binding to adenovirus: historical perspectives and implications for gene delivery. Expert Opinion on Drug Delivery, 2014, 11, 1795-1813.	2.4	19
36	Canonical Transforming Growth Factor-β Signaling Regulates Disintegrin Metalloprotease Expression in Experimental Renal Fibrosis via miR-29. American Journal of Pathology, 2013, 183, 1885-1896.	1.9	66

LAURA DENBY

#	Article	IF	CITATIONS
37	Angiotensin-(1-9) Attenuates Cardiac Fibrosis in the Stroke-Prone Spontaneously Hypertensive Rat via the Angiotensin Type 2 Receptor. Hypertension, 2012, 59, 300-307.	1.3	94
38	miR-21 and miR-214 Are Consistently Modulated during Renal Injury in Rodent Models. American Journal of Pathology, 2011, 179, 661-672.	1.9	100
39	Vascular-Targeting Antioxidant Therapy in a Model of Hypertension and Stroke. Journal of Cardiovascular Pharmacology, 2010, 56, 642-650.	0.8	15
40	Biodistribution and retargeting of FX-binding ablated adenovirus serotype 5 vectors. Blood, 2010, 116, 2656-2664.	0.6	96
41	Dynamic Changes in Lung MicroRNA Profiles During the Development of Pulmonary Hypertension due to Chronic Hypoxia and Monocrotaline. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 716-723.	1.1	305
42	Serotype Chimeric and Fiber-Mutated Adenovirus Ad5/19p-HIT for Targeting Renal Cancer and Untargeting the Liver. Human Gene Therapy, 2009, 20, 611-620.	1.4	17
43	Use of in vivo phage display to engineer novel adenoviruses for targeted delivery to the cardiac vasculature. FEBS Letters, 2009, 583, 2100-2107.	1.3	23
44	Mouse adenovirus type 1 and human adenovirus type 5 differ in endothelial cell tropism and liver targeting. Journal of Gene Medicine, 2009, 11, 119-127.	1.4	13
45	Adenovirus Serotype 5 Hexon Mediates Liver Gene Transfer. Cell, 2008, 132, 397-409.	13.5	573
46	IL-33 reduces the development of atherosclerosis. Journal of Experimental Medicine, 2008, 205, 339-346.	4.2	574
47	Development of Renal-targeted Vectors Through Combined In Vivo Phage Display and Capsid Engineering of Adenoviral Fibers From Serotype 19p. Molecular Therapy, 2007, 15, 1647-1654.	3.7	41
48	Multiple vitamin K-dependent coagulation zymogens promote adenovirus-mediated gene delivery to hepatocytes. Blood, 2006, 108, 2554-2561.	0.6	256
49	376. Hepatic Tropism of Adenoviral Type 5 Vectors Can Be Mediated by Multiple Coagulation Factors. Molecular Therapy, 2006, 13, S143.	3.7	1
50	21. Peptide-Targeted Ad19p-Based Adenoviral Vectors for Renal Gene Delivery. Molecular Therapy, 2006, 13, S9.	3.7	0
51	Vascular bed-targeted in vivo gene delivery using tropism-modified adeno-associated viruses. Molecular Therapy, 2006, 13, 683-693.	3.7	119
52	In Vivo Biopanning: A Methodological Approach to Identifying Novel Targeting Ligands for Delivery of Biological Agents to the Vasculature. , 2005, 108, 395-414.		2
53	Adeno-associated virus (AAV)-7 and -8 poorly transduce vascular endothelial cells and are sensitive to proteasomal degradation. Gene Therapy, 2005, 12, 1534-1538.	2.3	56
54	Adenoviral Serotype 5 Vectors Pseudotyped with Fibers from Subgroup D Show Modified TropismIn VitroandIn Vivo. Human Gene Therapy, 2004, 15, 1054-1064.	1.4	51

#	Article	IF	CITATIONS
55	Third-generation lentivirus vectors efficiently transduce and phenotypically modify vascular cells: implications for gene therapy. Journal of Molecular and Cellular Cardiology, 2003, 35, 739-748.	0.9	65
56	Gene Therapy for Cardiovascular Disease. Journal of Biomedicine and Biotechnology, 2003, 2003, 138-148.	3.0	20