Liberty Francois-Moutal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7792492/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Heat shock protein Grp78/BiP/HspA5 binds directly to TDP-43 and mitigates toxicity associated with disease pathology. Scientific Reports, 2022, 12, 8140.	3.3	12
2	<i>In Silico</i> Targeting of the Long Noncoding RNA MALAT1. ACS Medicinal Chemistry Letters, 2021, 12, 915-921.	2.8	10
3	Selective targeting of NaV1.7 via inhibition of the CRMP2-Ubc9 interaction reduces pain in rodents. Science Translational Medicine, 2021, 13, eabh1314.	12.4	23
4	An Allosteric Modulator of RNA Binding Targeting the N-Terminal Domain of TDP-43 Yields Neuroprotective Properties. ACS Chemical Biology, 2020, 15, 2854-2859.	3.4	19
5	The Natural Flavonoid Naringenin Elicits Analgesia through Inhibition of NaV1.8 Voltage-Gated Sodium Channels. ACS Chemical Neuroscience, 2019, 10, 4834-4846.	3.5	20
6	1H, 15N and 13C backbone assignment of apo TDP-43 RNA recognition motifs. Biomolecular NMR Assignments, 2019, 13, 163-167.	0.8	3
7	Small Molecule Targeting TDP-43's RNA Recognition Motifs Reduces Locomotor Defects in a <i>Drosophila</i> Model of Amyotrophic Lateral Sclerosis (ALS). ACS Chemical Biology, 2019, 14, 2006-2013.	3.4	45
8	Structural Insights Into TDP-43 and Effects of Post-translational Modifications. Frontiers in Molecular Neuroscience, 2019, 12, 301.	2.9	86
9	Targeting the CaVα–CaVβ interaction yields an antagonist of the N-type CaV2.2 channel with broad antinociceptive efficacy. Pain, 2019, 160, 1644-1661.	4.2	30
10	Evaluation of edonerpic maleate as a CRMP2 inhibitor for pain relief. Channels, 2019, 13, 498-504.	2.8	2
11	Remodeling the interactions between TDP43 and RNA for development of therapeutics for ALS. FASEB Journal, 2019, 33, 670.1.	0.5	Ο
12	Homologyâ€guided mutational analysis reveals the functional requirements for antinociceptive specificity of collapsin response mediator protein 2â€derived peptides. British Journal of Pharmacology, 2018, 175, 2244-2260.	5.4	40
13	A Chemical Biology Approach to Model Pontocerebellar Hypoplasia Type 1B (PCH1B). ACS Chemical Biology, 2018, 13, 3000-3010.	3.4	9
14	Chemical shift perturbation mapping of the Ubc9-CRMP2 interface identifies a pocket in CRMP2 amenable for allosteric modulation of Nav1.7 channels. Channels, 2018, 12, 219-227.	2.8	17
15	Inhibition of the Ubc9 E2 SUMO-conjugating enzyme–CRMP2 interaction decreases NaV1.7 currents and reverses experimental neuropathic pain. Pain, 2018, 159, 2115-2127.	4.2	49
16	A single structurally conserved SUMOylation site in CRMP2 controls NaV1.7 function. Channels, 2017, 11, 316-328.	2.8	34
17	CRISPR/Cas9 editing of Nf1 gene identifies CRMP2 as a therapeutic target in neurofibromatosis type 1-related pain that is reversed by (S)-Lacosamide. Pain, 2017, 158, 2301-2319.	4.2	67
18	(S)-Lacosamide Binding to Collapsin Response Mediator Protein 2 (CRMP2) Regulates CaV2.2 Activity by Subverting Its Phosphorylation by Cdk5. Molecular Neurobiology, 2016, 53, 1959-1976.	4.0	50

#	Article	IF	CITATIONS
19	A membrane-delimited N-myristoylated CRMP2 peptide aptamer inhibits CaV2.2 trafficking and reverses inflammatory and postoperative pain behaviors. Pain, 2015, 156, 1247-1264.	4.2	71
20	Differential neuroprotective potential of CRMP2 peptide aptamers conjugated to cationic, hydrophobic, and amphipathic cell penetrating peptides. Frontiers in Cellular Neuroscience, 2015, 8, 471.	3.7	37
21	The functionalized amino acid (S)-Lacosamide subverts CRMP2-mediated tubulin polymerization to prevent constitutive and activity-dependent increase in neurite outgrowth. Frontiers in Cellular Neuroscience, 2014, 8, 196.	3.7	38