
MichaÅ, K CyraÅ, "ski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7792468/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Diamine Bridge on Reactivity of Tetradentate ONNO Nickel(II) Complexes. ChemPhysChem, 2022, 23, .	1.0	0
2	Combination of solid-state NMR, molecular mechanics and DFT calculations for the molecular structure determination of methyl glycoside benzoates. Structural Chemistry, 2021, 32, 297-307.	1.0	0
3	Intermolecular interactions in hydrates of 4-methylpiperidine and 4-chloropiperidine – a structural and computational study. CrystEngComm, 2021, 23, 1251-1262.	1.3	2
4	Structural reasons for the formation of multicomponent products and the influence of high pressure. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2021, 77, 321-330.	0.5	1
5	Bowlâ€Shaped Pentagon―and Heptagonâ€Embedded Nanographene Containing a Central Pyrrolo[3,2â€ <i>b</i>]pyrrole Core. Angewandte Chemie - International Edition, 2021, 60, 14998-15005.	7.2	53
6	Rücktitelbild: Bowlâ€Shaped Pentagon―and Heptagonâ€Embedded Nanographene Containing a Central Pyrrolo[3,2â€ <i>b</i>]pyrrole Core (Angew. Chem. 27/2021). Angewandte Chemie, 2021, 133, 15240-15240.	1.6	0
7	Bowlâ€Shaped Pentagon―and Heptagonâ€Embedded Nanographene Containing a Central Pyrrolo[3,2―b]pyrrole Core. Angewandte Chemie, 2021, 133, 15125-15132.	1.6	14
8	Comprehensive Protocol for the Identification and Characterization of New Psychoactive Substances in the Service of Law Enforcement Agencies. Frontiers in Chemistry, 2020, 8, 693.	1.8	6
9	New cubic cluster phases in the Mg–Ni–Ga system. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2020, 76, 534-542.	0.5	4
10	Photostable orange-red fluorescent unsymmetrical diketopyrrolopyrrole–BF ₂ hybrids. Journal of Materials Chemistry C, 2020, 8, 7708-7717.	2.7	14
11	Polymorphism and structural diversities of LiClO ₄ –β-alanine ionic co-crystals. CrystEngComm, 2020, 22, 4427-4437.	1.3	3
12	Influence of acetylation on anomeric effect in methyl glycosides. Molecular Physics, 2019, 117, 349-358.	0.8	1
13	Kosmotropic Behavior of 3-Pyrroline during Crystalline Hydrates Formation. Crystal Growth and Design, 2019, 19, 4721-4730.	1.4	2
14	Structure and Properties of 1,3-Phenylenediboronic Acid: Combined Experimental and Theoretical Investigations. Crystals, 2019, 9, 109.	1.0	10
15	Covalently Linked Bis(Amidoâ€Corroles): Inter―and Intramolecular Hydrogenâ€Bondâ€Driven Supramolecular Assembly. Chemistry - A European Journal, 2019, 25, 9658-9664.	1.7	9
16	Cholesterol-based photo-switchable mesogenic dimers. Strongly bent molecules <i>versus</i> an intercalated structure. CrystEngComm, 2019, 21, 2779-2789.	1.3	13
17	Synthesis and characterization of Gd3+- and Tb3+-doped iron oxide nanoparticles for possible endoradiotherapy and hyperthermia. Journal of Magnetism and Magnetic Materials, 2019, 479, 50-58.	1.0	14
18	Synthesis and crystal structure of new compounds from the Y–Mg–Ni system. Zeitschrift Fur Kristallographie - Crystalline Materials, 2019, 234, 19-32.	0.4	5

ΜιςμαÅ, Κ CyraÅ,,ski

#	Article	IF	CITATIONS
19	Formation of Crystalline Hydrates by Nonionic Chaotropes and Kosmotropes: Case of Piperidine. Crystal Growth and Design, 2019, 19, 1005-1020.	1.4	6
20	Improving Fluorometric Determination of Water Content in Aprotic Solvents. Food Analytical Methods, 2018, 11, 486-494.	1.3	2
21	Easy Synthesis and Characterization of Holmium-Doped SPIONs. Nanomaterials, 2018, 8, 430.	1.9	30
22	Hydrogen Bonds Involving Cavity NH Protons Drives Supramolecular Oligomerization of Amido orroles. Chemistry - A European Journal, 2017, 23, 10195-10204.	1.7	13
23	Reconnaissance of reactivity of an Ag(<scp>ii</scp>)SO ₄ one-electron oxidizer towards naphthalene derivatives. New Journal of Chemistry, 2017, 41, 10742-10749.	1.4	15
24	The role of steric hindrance in the intramolecular oxidative aromatic coupling of pyrrolo[3,2-b]pyrroles. Chemical Communications, 2016, 52, 11539-11542.	2.2	23
25	Cyclic π-electron delocalization in non-planar linear acenes. Physical Chemistry Chemical Physics, 2016, 18, 11813-11820.	1.3	14
26	Hydrates of Cyclobutylamine: Modifications of Gas Clathrate Types sI and sH. Crystal Growth and Design, 2016, 16, 2717-2725.	1.4	7
27	Complete Series of Alkali-Metal M(BH ₃ NH ₂ BH ₂ NH ₂ BH ₂ NH ₂ BH ₃) Hydrogen-Storage Salts Accessed via Metathesis in Organic Solvents. Inorganic Chemistry, 2016, 55, 37-45.	1.9	24
28	Double head-to-tail direct arylation as a viable strategy towards the synthesis of the aza-analog of dihydrocyclopenta[hi]aceanthrylene – an intriguing antiaromatic heterocycle. Chemical Communications, 2016, 52, 1262-1265.	2.2	16
29	Aluminum hippurate and diglycolate as multinuclear metal carboxylates. Journal of Coordination Chemistry, 2015, 68, 1189-1198.	0.8	2
30	Towards Clathrates: Frozen States of Hydration of <i>tert</i> â€Butylamine. Angewandte Chemie - International Edition, 2015, 54, 10138-10144.	7.2	16
31	Acidic C–H Bond as a Proton Donor in Excited State Intramolecular Proton Transfer Reactions. Journal of Chemical Theory and Computation, 2015, 11, 1046-1054.	2.3	65
32	Pyrrolidine and Its Hydrates in the Solid State. Crystal Growth and Design, 2015, 15, 4804-4812.	1.4	18
33	First experimental charge density study using a Bruker CMOS-type PHOTON 100 detector: the case of ammonium tetraoxalate dihydrate. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2014, 70, 847-855.	0.5	9
34	Benzo[a]imidazo[5,1,2-cd]indolizines – a new class of molecules displaying excited state intramolecular proton transfer. New Journal of Chemistry, 2014, 38, 189-197.	1.4	35
35	Structural diversities of charge transfer organic complexes. Focus on benzenoid hydrocarbons and 7,7,8,8-tetracyanoquinodimethane. CrystEngComm, 2014, 16, 415-429.	1.3	60
36	Synthesis and biological activity of novel series of heterocyclic compounds containing succinimide moiety. Heterocyclic Communications, 2013, 19, 287-296.	0.6	9

ΜιςμαÅ, Κ ζυγαÅ,,ski

#	Article	IF	CITATIONS
37	Towards a monomeric structure of phenylboronic acid: The influence of ortho-alkoxy substituents on the crystal structure. CrystEngComm, 2012, 14, 6282.	1.3	35
38	On two alizarin polymorphs. CrystEngComm, 2012, 14, 3667.	1.3	21
39	Application of graph theory and topological models for the determination of fundamentals of the aromatic character of pi-conjugated hydrocarbons. Pure and Applied Chemistry, 2012, 84, 1069-1088.	0.9	3
40	lmidazo[1,2- <i>a</i>]pyridines Susceptible to Excited State Intramolecular Proton Transfer: One-Pot Synthesis via an Ortoleva–King Reaction. Journal of Organic Chemistry, 2012, 77, 5552-5558.	1.7	301
41	On the aromatic stabilization of corannulene and coronene. Physical Chemistry Chemical Physics, 2011, 13, 20557.	1.3	34
42	Quadrannulene: A Nonclassical Fullerene Fragment. Angewandte Chemie - International Edition, 2010, 49, 399-402.	7.2	102
43	How to Find the Fries Structures for Benzenoid Hydrocarbons. Symmetry, 2010, 2, 1390-1400.	1.1	18
44	Impact of intermolecular hydrogen bond on structural properties of phenylboronic acid: quantum chemical and Xâ€ray study. Journal of Physical Organic Chemistry, 2008, 21, 472-482.	0.9	80
45	Structural and spectroscopic properties of an aliphatic boronic acid studied by combination of experimental and theoretical methods. Journal of Chemical Physics, 2008, 128, 124512.	1.2	22
46	The Phenalenyl Motif: A Magnetic Chameleon. Chemistry - A European Journal, 2007, 13, 2201-2207.	1.7	45
47	1,3-Dihydro-1-hydroxy-3-morpholin-4-yl-2,1-benzoxaborole: product of the reaction ofo-formylphenylboronic acid with morpholine. Applied Organometallic Chemistry, 2005, 19, 1202-1203.	1.7	22
48	Synthesis and Structure of 2â€Hydroxyâ€2â€Methylâ€1,3â€Bisâ€(Methyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 24, 697-704.) 307 Td (3 0.4	3′,4′,6âŧ 3
49	Diastereoselectivity of Chiral Nitrone 1,3-Dipolar Cycloaddition to Baylis-Hillman Adducts. Monatshefte Für Chemie, 2004, 135, 685-696.	0.9	11
50	Bond energy, aromatic stabilization energy and strain in IPR fullerenes. Chemical Communications, 2004, , 2458-2459.	2.2	26
51	Rearrangement of 23-oxospirostanes to the 22-oxo-23-spiroketal isomers promoted by Lewis acids—X-ray crystal structure of (23R,25S)-3β-acetoxy-16β,23:23,26-diepoxy-5β-cholestan-22-one. Steroids, 2004, 69, 395-400.	0.8	22
52	Consequences of proton transfer in guanidine. Journal of Physical Organic Chemistry, 2003, 16, 91-106.	0.9	109
53	Variation of the ?-electron delocalization in exocyclically substituted heptafulvene derivatives. Journal of Physical Organic Chemistry, 2003, 16, 426-430.	0.9	21
54	Ab initiostudy of tautomerism and of basicity center preference in histamine, from gas phase to solution-comparison with experimental data (gas phase, solution, solid state). Journal of Physical Organic Chemistry, 2003, 16, 783-796.	0.9	30

#	Article	IF	CITATIONS
55	On the Aromatic Character of the Heterocyclic Bases of DNA and RNA#. Journal of Organic Chemistry, 2003, 68, 8607-8613.	1.7	70
56	Separation of the Energetic and Geometric Contributions to Aromaticity. 3. Analysis of the Aromatic Character of Benzene Rings in Their Various Topological and Chemical Environments in the Substituted Benzene Derivatives. Journal of Chemical Information and Computer Sciences, 1996, 36,	2.8	39

1142-1145.