Ghim Wei Ho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7791716/publications.pdf Version: 2024-02-01

Сним Шеі Но

#	Article	IF	CITATIONS
1	Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy and Environmental Science, 2019, 12, 841-864.	15.6	1,235
2	Recent progress in solar-driven interfacial water evaporation: Advanced designs and applications. Nano Energy, 2019, 57, 507-518.	8.2	597
3	Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications. Materials Horizons, 2018, 5, 323-343.	6.4	513
4	In Situ Transformation of MOFs into Layered Double Hydroxide Embedded Metal Sulfides for Improved Electrocatalytic and Supercapacitive Performance. Advanced Materials, 2017, 29, 1606814.	11.1	502
5	Selfâ€Contained Monolithic Carbon Sponges for Solarâ€Driven Interfacial Water Evaporation Distillation and Electricity Generation. Advanced Energy Materials, 2018, 8, 1702149.	10.2	430
6	Plasmonic photothermic directed broadband sunlight harnessing for seawater catalysis and desalination. Energy and Environmental Science, 2016, 9, 3151-3160.	15.6	322
7	Self-surface charge exfoliation and electrostatically coordinated 2D hetero-layered hybrids. Nature Communications, 2017, 8, 14224.	5.8	318
8	Shape Conformal and Thermal Insulative Organic Solar Absorber Sponge for Photothermal Water Evaporation and Thermoelectric Power Generation. Advanced Energy Materials, 2019, 9, 1900250.	10.2	286
9	Hybrid solar-driven interfacial evaporation systems: Beyond water production towards high solar energy utilization. Materials Today, 2021, 42, 178-191.	8.3	274
10	Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing. Light: Science and Applications, 2014, 3, e185-e185.	7.7	257
11	Solar Absorber Gel: Localized Macroâ€Nano Heat Channeling for Efficient Plasmonic Au Nanoflowers Photothermic Vaporization and Triboelectric Generation. Advanced Energy Materials, 2018, 8, 1800711.	10.2	256
12	Noble Metalâ€Free Nanocatalysts with Vacancies for Electrochemical Water Splitting. Small, 2018, 14, e1703323.	5.2	250
13	Visibleâ€ŧoâ€NIR Photon Harvesting: Progressive Engineering of Catalysts for Solarâ€Powered Environmental Purification and Fuel Production. Advanced Materials, 2018, 30, e1802894.	11.1	237
14	Structural design of TiO ₂ -based photocatalyst for H ₂ production and degradation applications. Catalysis Science and Technology, 2015, 5, 4703-4726.	2.1	223
15	Direct-Ink-Write 3D Printing of Hydrogels into Biomimetic Soft Robots. ACS Nano, 2019, 13, 13176-13184.	7.3	203
16	Topotactic Engineering of Ultrathin 2D Nonlayered Nickel Selenides for Full Water Electrolysis. Advanced Energy Materials, 2018, 8, 1702704.	10.2	181
17	Spectrum Tailored Defective 2D Semiconductor Nanosheets Aerogel for Fullâ€Spectrumâ€Driven Photothermal Water Evaporation and Photochemical Degradation. Advanced Functional Materials, 2020, 30, 2004460.	7.8	175
18	Photothermal Catalytic Gel Featuring Spectral and Thermal Management for Parallel Freshwater and Hydrogen Production. Advanced Energy Materials, 2020, 10, 2000925.	10.2	162

#	Article	IF	CITATIONS
19	Fabrication of wheat grain textured TiO2/CuO composite nanofibers for enhanced solar H2 generation and degradation performance. Nano Energy, 2015, 11, 28-37.	8.2	157
20	Pseudomorphic Transformation of Interpenetrated Prussian Blue Analogs into Defective Nickel Iron Selenides for Enhanced Electrochemical and Photoâ€Electrochemical Water Splitting. Advanced Energy Materials, 2019, 9, 1802983.	10.2	150
21	Controlled heterogeneous water distribution and evaporation towards enhanced photothermal water-electricity-hydrogen production. Nano Energy, 2020, 77, 105102.	8.2	148
22	Mesophase Ordering of TiO ₂ Film with High Surface Area and Strong Light Harvesting for Dye-Sensitized Solar Cell. ACS Applied Materials & Interfaces, 2010, 2, 1844-1850.	4.0	140
23	Non-noble metal Cu-loaded TiO ₂ for enhanced photocatalytic H ₂ production. Nanoscale, 2013, 5, 759-764.	2.8	139
24	Photothermal Membrane Distillation toward Solar Water Production. Small Methods, 2021, 5, e2001200.	4.6	137
25	Modular Deformable Steam Electricity Cogeneration System with Photothermal, Water, and Electrochemical Tunable Multilayers. Advanced Functional Materials, 2020, 30, 2002867.	7.8	133
26	A stretchable fiber nanogenerator for versatile mechanical energy harvesting and self-powered full-range personal healthcare monitoring. Nano Energy, 2017, 41, 511-518.	8.2	124
27	High performance ZnO nanowire field effect transistor using self-aligned nanogap gate electrodes. Applied Physics Letters, 2006, 89, 263102.	1.5	122
28	Metal nanoparticle-loaded hierarchically assembled ZnO nanoflakes for enhanced photocatalytic performance. Nanoscale, 2013, 5, 5568.	2.8	122
29	Scalable thermoelectric fibers for multifunctional textile-electronics. Nature Communications, 2020, 11, 6006.	5.8	122
30	Atomic―and Molecular‣evel Design of Functional Metal–Organic Frameworks (MOFs) and Derivatives for Energy and Environmental Applications. Advanced Science, 2019, 6, 1901129.	5.6	121
31	Influence of a novel fluorosurfactant modified PEDOT:PSS hole transport layer on the performance of inverted organic solar cells. Journal of Materials Chemistry, 2012, 22, 25057.	6.7	120
32	Bidentate-complex-derived TiO2/carbon dot photocatalysts: in situ synthesis, versatile heterostructures, and enhanced H2 evolution. Journal of Materials Chemistry A, 2014, 2, 5703.	5.2	120
33	Autonomous atmospheric water seeping MOF matrix. Science Advances, 2020, 6, .	4.7	120
34	Controlled synthesis and application of ZnO nanoparticles, nanorods and nanospheres in dye-sensitized solar cells. Nanotechnology, 2009, 20, 045604.	1.3	119
35	In situ chemical etching of tunable 3D Ni ₃ S ₂ superstructures for bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2016, 4, 13916-13922.	5.2	117
36	In-built thermo-mechanical cooperative feedback mechanism for self-propelled multimodal locomotion and electricity generation. Nature Communications, 2018, 9, 3438.	5.8	117

#	Article	IF	CITATIONS
37	A Biomimetic Conductive Tendril for Ultrastretchable and Integratable Electronics, Muscles, and Sensors. ACS Nano, 2018, 12, 3898-3907.	7.3	115
38	Surface texturing and dielectric property tuning toward boosting of triboelectric nanogenerator performance. Journal of Materials Chemistry A, 2018, 6, 52-57.	5.2	113
39	Z-scheme transition metal bridge of Co9S8/Cd/CdS tubular heterostructure for enhanced photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2021, 286, 119853.	10.8	112
40	A facile approach towards ZnO nanorods conductive textile for room temperature multifunctional sensors. Sensors and Actuators B: Chemical, 2010, 151, 121-126.	4.0	109
41	Ultrathin nickel boron oxide nanosheets assembled vertically on graphene: a new hybrid 2D material for enhanced photo/electro-catalysis. Materials Horizons, 2017, 4, 885-894.	6.4	108
42	Bifunctional 2D-on-2D MoO ₃ nanobelt/Ni(OH) ₂ nanosheets for supercapacitor-driven electrochromic energy storage. Journal of Materials Chemistry A, 2017, 5, 8343-8351.	5.2	106
43	Somatosensory, Lightâ€Driven, Thinâ€Film Robots Capable of Integrated Perception and Motility. Advanced Materials, 2020, 32, e2000351.	11.1	106
44	Self-Biased Hybrid Piezoelectric-Photoelectrochemical Cell with Photocatalytic Functionalities. ACS Nano, 2015, 9, 7661-7670.	7.3	105
45	Hybrid Photothermal Pyroelectric and Thermogalvanic Generator for Multisituation Low Grade Heat Harvesting. Advanced Energy Materials, 2018, 8, 1802397.	10.2	103
46	Probing the morphology-device relation of Fe ₂ O ₃ nanostructures towards photovoltaic and sensing applications. Nanoscale, 2012, 4, 194-205.	2.8	100
47	Disorder Engineering in Monolayer Nanosheets Enabling Photothermic Catalysis for Full Solar Spectrum (250–2500 nm) Harvesting. Angewandte Chemie - International Edition, 2019, 58, 3077-3081.	7.2	100
48	Three-dimensional crystalline SiC nanowire flowers. Nanotechnology, 2004, 15, 996-999.	1.3	98
49	Ag–CuO–ZnO metal–semiconductor multiconcentric nanotubes for achieving superior and perdurable photodegradation. Nanoscale, 2017, 9, 11574-11583.	2.8	96
50	Identification of Facetâ€Governing Reactivity in Hematite for Oxygen Evolution. Advanced Materials, 2018, 30, e1804341.	11.1	96
51	Hierarchical Assembly of SnO2/ZnO Nanostructures for Enhanced Photocatalytic Performance. Scientific Reports, 2015, 5, 11609.	1.6	94
52	Using the sun to co-generate electricity and freshwater. Joule, 2021, 5, 1639-1641.	11.7	94
53	Uniaxially Stretched Flexible Surface Plasmon Resonance Film for Versatile Surface Enhanced Raman Scattering Diagnostics. ACS Applied Materials & Interfaces, 2017, 9, 26341-26349.	4.0	91
54	Vegetable-extracted carbon dots and their nanocomposites for enhanced photocatalytic H ₂ production. RSC Advances, 2014, 4, 44117-44123.	1.7	89

#	Article	IF	CITATIONS
55	One-step activation towards spontaneous etching of hollow and hierarchical porous carbon nanospheres for enhanced pollutant adsorption and energy storage. Applied Catalysis B: Environmental, 2018, 220, 533-541.	10.8	89
56	Design of a Metal Oxide–Organic Framework (MoOF) Foam Microreactor: Solarâ€Induced Direct Pollutant Degradation and Hydrogen Generation. Advanced Materials, 2015, 27, 7713-7719.	11.1	86
57	Hedgehog Inspired CuO Nanowires/Cu ₂ O Composites for Broadband Visibleâ€Lightâ€Driven Recyclable Surface Enhanced Raman Scattering. Advanced Optical Materials, 2018, 6, 1701167.	3.6	82
58	Synthesis of well-aligned multiwalled carbon nanotubes on Ni catalyst using radio frequency plasma-enhanced chemical vapor deposition. Thin Solid Films, 2001, 388, 73-77.	0.8	77
59	Green chemistry synthesis of a nanocomposite graphene hydrogel with three-dimensional nano-mesopores for photocatalytic H2 production. RSC Advances, 2013, 3, 13169.	1.7	76
60	Nanophotonic-Engineered Photothermal Harnessing for Waste Heat Management and Pyroelectric Generation. ACS Nano, 2017, 11, 10568-10574.	7.3	75
61	TiO2 Fibers Supported β-FeOOH Nanostructures as Efficient Visible Light Photocatalyst and Room Temperature Sensor. Scientific Reports, 2015, 5, 10601.	1.6	73
62	Stimulated Electrocatalytic Hydrogen Evolution Activity of MOFâ€Derived MoS ₂ Basal Domains via Charge Injection through Surface Functionalization and Heteroatom Doping. Advanced Science, 2019, 6, 1900140.	5.6	73
63	Carbon-ensemble-manipulated ZnS heterostructures for enhanced photocatalytic H ₂ evolution. Nanoscale, 2014, 6, 9673.	2.8	71
64	Modification of ZnO nanorods through Au nanoparticles surface coating for dye-sensitized solar cells applications. Materials Letters, 2010, 64, 1372-1375.	1.3	69
65	Cross-linker mediated formation of sulfur-functionalized V ₂ O ₅ /graphene aerogels and their enhanced pseudocapacitive performance. Nanoscale, 2017, 9, 802-811.	2.8	68
66	Functional Defective Metalâ€Organic Coordinated Network of Mesostructured Nanoframes for Enhanced Electrocatalysis. Advanced Functional Materials, 2018, 28, 1704177.	7.8	68
67	Conformal Microfluidicâ€Blowâ€Spun 3D Photothermal Catalytic Spherical Evaporator for Omnidirectional Enhanced Solar Steam Generation and CO ₂ Reduction. Advanced Science, 2021, 8, e2101232.	5.6	68
68	Hybrid organic PVDF–inorganic M–rGO–TiO2 (M = Ag, Pt) nanocomposites for multifunctional volatile organic compound sensing and photocatalytic degradation–H2 production. Nanoscale, 2013, 5, 11283.	2.8	67
69	Gas Sensor with Nanostructured Oxide Semiconductor Materials. Science of Advanced Materials, 2011, 3, 150-168.	0.1	65
70	Room temperature sequential ionic deposition (SID) of Ag ₂ S nanoparticles on TiO ₂ hierarchical spheres for enhanced catalytic efficiency. Journal of Materials Chemistry A, 2015, 3, 6509-6516.	5.2	64
71	Photocatalytic H2 production of composite one-dimensional TiO2 nanostructures of different morphological structures and crystal phases with graphene. Catalysis Science and Technology, 2013, 3, 1086.	2.1	63
72	Flexible Palladium-Based H ₂ Sensor with Fast Response and Low Leakage Detection by Nanoimprint Lithography. ACS Applied Materials & Interfaces, 2013, 5, 7274-7281.	4.0	62

GHIM WEI HO

#	Article	IF	CITATIONS
73	In situ photo-assisted deposition and photocatalysis of ZnIn ₂ S ₄ /transition metal chalcogenides for enhanced degradation and hydrogen evolution under visible light. Dalton Transactions, 2016, 45, 552-560.	1.6	61
74	Controllable Porosity of Monodispersed Tin Oxide Nanospheres via an Additive-Free Chemical Route. Crystal Growth and Design, 2009, 9, 732-736.	1.4	60
75	Inverse Stellation of CuAu-ZnO Multimetallic-Semiconductor Nanostartube for Plasmon-Enhanced Photocatalysis. ACS Nano, 2018, 12, 4512-4520.	7.3	60
76	Formation of hybrid structures: copper oxide nanocrystals templated on ultralong copper nanowires for open network sensing at room temperature. Nanotechnology, 2011, 22, 235701.	1.3	57
77	Multi-interface engineering of solar evaporation devices via scalable, synchronous thermal shrinkage and foaming. Nano Energy, 2020, 74, 104875.	8.2	57
78	A Fast Autonomous Healing Magnetic Elastomer for Instantly Recoverable, Modularly Programmable, and Thermorecyclable Soft Robots. Advanced Functional Materials, 2021, 31, 2101825.	7.8	56
79	Gas sensing properties of tin oxide nanostructures synthesized via a solid-state reaction method. Nanotechnology, 2008, 19, 255706.	1.3	55
80	Facile control of copper nanowire dimensions via the Maillard reaction: using food chemistry for fabricating large-scale transparent flexible conductors. Green Chemistry, 2015, 17, 1120-1126.	4.6	55
81	Template-free synthesis and gas sensing properties of well-controlled porous tin oxide nanospheres. Sensors and Actuators B: Chemical, 2009, 143, 295-301.	4.0	54
82	Electrodeposited cobalt phosphide superstructures for solar-driven thermoelectrocatalytic overall water splitting. Journal of Materials Chemistry A, 2017, 5, 16580-16584.	5.2	54
83	Self-supported yolk–shell nanocolloids towards high capacitance and excellent cycling performance. Nano Energy, 2015, 18, 273-282.	8.2	53
84	All‣oft and Stretchable Thermogalvanic Gel Fabric for Antideformity Body Heat Harvesting Wearable. Advanced Energy Materials, 2021, 11, 2102219.	10.2	52
85	Electric field-induced carbon nanotube junction formation. Applied Physics Letters, 2001, 79, 260-262.	1.5	50
86	Acidic Media Regulated Hierarchical Cobalt Compounds with Phosphorous Doping as Water Splitting Electrocatalysts. Advanced Energy Materials, 2021, 11, 2100358.	10.2	50
87	Facile Solution Route to Vertically Aligned, Selective Growth of ZnO Nanostructure Arrays. Langmuir, 2007, 23, 11960-11963.	1.6	49
88	Device Stability and Light-Soaking Characteristics of High-Efficiency Benzodithiophene–Thienothiophene Copolymer-Based Inverted Organic Solar Cells with F-TiO _{<i>x</i>} Electron-Transport Layer. ACS Applied Materials & Interfaces, 2015, 7, 12119-12127.	4.0	49
89	Facilitating the charge transfer of ZnMoS ₄ /CuS p–n heterojunctions through ZnO intercalation for efficient photocatalytic hydrogen generation. Journal of Materials Chemistry A, 2018, 6, 11416-11423.	5.2	47
90	Selective Wavelength Enhanced Photochemical and Photothermal H ₂ Generation of Classical Oxide Supported Metal Catalyst. Advanced Functional Materials, 2021, 31, 2104750.	7.8	46

#	Article	IF	CITATIONS
91	Synthesis and tuning of ordering and crystallinity of mesoporous titanium dioxide film. Materials Letters, 2009, 63, 1624-1627.	1.3	45
92	Plasmonic enhanced photoelectrochemical and photocatalytic performances of 1D coaxial Ag@Ag ₂ S hybrids. Journal of Materials Chemistry A, 2017, 5, 21570-21578.	5.2	45
93	Self-assembled Growth of Coaxial Crystalline Nanowires. Nano Letters, 2004, 4, 2023-2026.	4.5	44
94	A novel maskless approach towards aligned, density modulated and multi-junction ZnO nanowires for enhanced surface area and light trapping solar cells. Nanotechnology, 2010, 21, 315602.	1.3	44
95	Topotactic Consolidation of Monocrystalline CoZn Hydroxides for Advanced Oxygen Evolution Electrodes. Angewandte Chemie - International Edition, 2016, 55, 10326-10330.	7.2	43
96	A Hybrid Solar Absorber–Electrocatalytic Nâ€Doped Carbon/Alloy/Semiconductor Electrode for Localized Photothermic Electrocatalysis. Advanced Materials, 2019, 31, e1903605.	11.1	43
97	One step solution synthesis towards ultra-thin and uniform single-crystalline ZnO nanowires. Applied Physics A: Materials Science and Processing, 2007, 86, 457-462.	1.1	41
98	Harvesting broadband absorption of the solar spectrum for enhanced photocatalytic H2 generation. Journal of Materials Chemistry A, 2015, 3, 19360-19367.	5.2	41
99	Shaped-controlled synthesis of porous NiCo ₂ O ₄ with 1-3 dimensional hierarchical nanostructures for high-performance supercapacitors. RSC Advances, 2015, 5, 1697-1704.	1.7	41
100	Multiâ€interfacial catalyst with spatially defined redox reactions for enhanced pure water photothermal hydrogen production. EcoMat, 2021, 3, .	6.8	40
101	Substrateâ€Friendly Growth of Largeâ€Sized Ni(OH) ₂ Nanosheets for Flexible Electrochromic Films. Small, 2017, 13, 1700084.	5.2	39
102	Addressing the light-soaking issue in inverted organic solar cells using chemical bath deposited fluorinated TiO _x electron transport layer. Journal of Materials Chemistry A, 2015, 3, 314-322.	5.2	38
103	Design of untethered soft material micromachine for life-like locomotion. Materials Today, 2022, 53, 197-216.	8.3	38
104	In Situ Dissolution–Diffusion toward Homogeneous Multiphase Ag/Ag ₂ S@ZnS Core–Shell Heterostructures for Enhanced Photocatalytic Performance. Journal of Physical Chemistry C, 2015, 119, 1667-1675.	1.5	37
105	C-doped ZnO nanowires: Electronic structures, magnetic properties, and a possible spintronic device. Journal of Chemical Physics, 2011, 134, 104706.	1.2	35
106	Electrical current mediated interconversion between graphene oxide to reduced grapene oxide. Applied Physics Letters, 2011, 98, .	1.5	35
107	Resistive Switching and Polarization Reversal of Hydrothermal-Method-Grown Undoped Zinc Oxide Nanorods by Using Scanning Probe Microscopy Techniques. ACS Applied Materials & Interfaces, 2015, 7, 11412-11422.	4.0	35
108	Strain effects on work functions of pristine and potassium-decorated carbon nanotubes. Journal of Chemical Physics, 2009, 131, 224701.	1.2	34

#	Article	IF	CITATIONS
109	Tuning of multifunctional Cu-doped ZnO films and nanowires for enhanced piezo/ferroelectric-like and gas/photoresponse properties. Nanoscale, 2014, 6, 1680-1690.	2.8	32
110	Pseudomorphic-phase transformation of NiCo based ternary hierarchical 2D-1D nanostructures for enhanced electrocatalysis. Journal of Materials Chemistry A, 2017, 5, 919-924.	5.2	32
111	Patterned growth of vertically-aligned ZnO nanorods on a flexible platform for feasible transparent and conformable electronics applications. Journal of Materials Chemistry, 2012, 22, 8518.	6.7	30
112	Topotactic Consolidation of Monocrystalline CoZn Hydroxides for Advanced Oxygen Evolution Electrodes. Angewandte Chemie, 2016, 128, 10482-10486.	1.6	30
113	Macromolecule conformational shaping for extreme mechanical programming of polymorphic hydrogel fibers. Nature Communications, 2022, 13, .	5.8	29
114	Non-planar geometries of solution processable transparent conducting oxide: from film characterization to architectured electrodes. Energy and Environmental Science, 2012, 5, 7196.	15.6	27
115	High-efficient electrocatalysts by unconventional acid-etching for overall water splitting. Journal of Materials Chemistry A, 2017, 5, 24153-24158.	5.2	26
116	Mesophase ordering and macroscopic morphology structuring of mesoporous TiO2 film. Materials Chemistry and Physics, 2009, 116, 563-568.	2.0	25
117	Transferability of solution processed epitaxial Ga:ZnO films; tailored for gas sensor and transparent conducting oxide applications. Journal of Materials Chemistry, 2012, 22, 16442.	6.7	25
118	Sub-100 nm patterning of TiO ₂ film for the regulation of endothelial and smooth muscle cell functions. Biomaterials Science, 2014, 2, 1740-1749.	2.6	25
119	Outsideâ€In Recrystallization of ZnS–Cu _{1.8} S Hollow Spheres with Interdispersed Lattices for Enhanced Visible Light Solar Hydrogen Generation. Chemistry - A European Journal, 2014, 20, 11505-11510.	1.7	25
120	Multi-compositional hierarchical nanostructured Ni ₃ S ₂ @MoS _x /NiO electrodes for enhanced electrocatalytic hydrogen generation and energy storage. Journal of Materials Chemistry A, 2018, 6, 20491-20499.	5.2	25
121	2D hydrated layered Ni(OH)2 structure with hollow TiO2 nanocomposite directed chromogenic and catalysis capabilities. Journal of Materials Chemistry A, 2016, 4, 13307-13315.	5.2	24
122	Investigation of Ionic Conductivity and Long-Term Stability of a Lil and KI Coupled Diphenylamine Quasi-Solid-State Dye-Sensitized Solar Cell. ACS Applied Materials & Interfaces, 2011, 3, 2383-2391.	4.0	23
123	Ammonia plasma modification towards a rapid and low temperature approach for tuning electrical conductivity of ZnO nanowires on flexible substrates. Nanoscale, 2011, 3, 4206.	2.8	23
124	Highly flexible solution processable heterostructured zinc oxide nanowires mesh for environmental clean-up applications. RSC Advances, 2014, 4, 27481-27487.	1.7	23
125	Self-regulating reversible photocatalytic-driven chromism of a cavity enhanced optical field TiO ₂ /CuO nanocomposite. Journal of Materials Chemistry A, 2017, 5, 10909-10916.	5.2	23
126	Spatially Probed Plasmonic Photothermic Nanoheater Enhanced Hybrid Polymeric–Metallic PVDFâ€Ag Nanogenerator. Small, 2018, 14, 1702268.	5.2	23

#	Article	IF	CITATIONS
127	Tailoring the Porosity of 3D Tin Oxide Nanostructures Using Urea for Sensing and Photovoltaic Applications. Science of Advanced Materials, 2013, 5, 1418-1426.	0.1	22
128	Fine structural tuning of whereabout and clustering of metal–metal oxide heterostructure for optimal photocatalytic enhancement and stability. Nanoscale, 2014, 6, 12655-12664.	2.8	20
129	Rational Integration of Inbuilt Aperture with Mesoporous Framework in Unusual Asymmetrical Yolk–Shell Structures for Energy Storage and Conversion. ACS Applied Materials & Interfaces, 2016, 8, 32901-32909.	4.0	20
130	High Catalytic Activity of Au Clusters Supported on ZnO Nanosheets. Journal of Physical Chemistry C, 2014, 118, 21038-21041.	1.5	19
131	Enhanced Photocatalytic Performance of TiO2 Hierarchical Spheres Decorated with Ag2S Nanoparticles. Procedia Engineering, 2016, 141, 7-14.	1.2	19
132	Direct stamping and capillary flow patterning of solution processable piezoelectric polyvinylidene fluoride films. Polymer, 2013, 54, 5330-5337.	1.8	18
133	Modeling and Experimental Study of a Low-Frequency-Vibration-Based Power Generator Using ZnO Nanowire Arrays. Journal of Microelectromechanical Systems, 2012, 21, 776-778.	1.7	17
134	Self-assembly formation of NiCo ₂ O ₄ superstructures with porous architectures for electrochemical capacitors. RSC Advances, 2015, 5, 53259-53266.	1.7	17
135	All-in-one solar cell: Stable, light-soaking free, solution processed and efficient diketopyrrolopyrrole based small molecule inverted organic solar cells. Solar Energy Materials and Solar Cells, 2016, 150, 19-31.	3.0	17
136	Spontaneous Electroless Galvanic Cell Deposition of 3D Hierarchical and Interlaced S–M–S Heterostructures. Advanced Materials, 2017, 29, 1604417.	11.1	16
137	Spontaneous Atomic Sites Formation in Wurtzite CoO Nanorods for Robust CO ₂ Photoreduction. Advanced Functional Materials, 2022, 32, .	7.8	16
138	Hydrolysis and ion exchange of titania nanoparticles towards large-scale titania and titanate nanobelts for gas sensing applications. Journal Physics D: Applied Physics, 2010, 43, 035401.	1.3	15
139	Facile synthesis of flower-like hierarchical NiCo ₂ O ₄ microspheres as high-performance cathode materials for Li–O ₂ batteries. RSC Advances, 2016, 6, 98867-98873.	1.7	15
140	Simultaneous in situ reduction and embedment of Cu nanoparticles into TiO2 for the design of exceptionally active and stable photocatalysts. Journal of Materials Chemistry A, 2018, 6, 16213-16219.	5.2	14
141	Nickel-Cobalt Layered Double Hydroxides for Photocatalytic Degradation under Visible Light Irradiation. Procedia Engineering, 2017, 215, 163-170.	1.2	13
142	Corrosion-Mediated Self-Assembly (CMSA): Direct Writing Towards Sculpturing of 3D Tunable Functional Nanostructures. Angewandte Chemie - International Edition, 2015, 54, 15804-15808.	7.2	12
143	Optically Governed Dynamic Surface Charge Redistribution of Hybrid Plasmoâ€₽yroelectric Nanosystems. Small, 2019, 15, e1903042.	5.2	12
144	Transmission/absorption measurements for in situ monitoring of transparent conducting Ga:ZnO films grown via aqueous methods. Journal of Materials Chemistry A, 2013, 1, 14239.	5.2	10

#	Article	IF	CITATIONS
145	Natureâ€Inspired Design of Artificial Solarâ€toâ€Fuel Conversion Systems based on Copper Phosphate Microflowers. ChemSusChem, 2016, 9, 1575-1578.	3.6	10
146	Manganese Copper Sulfide Nanocomposites: Structure Tailoring and Photo/Electrocatalytic Hydrogen Generation. ChemCatChem, 2017, 9, 4148-4154.	1.8	10
147	Disorder Engineering in Monolayer Nanosheets Enabling Photothermic Catalysis for Full Solar Spectrum (250–2500 nm) Harvesting. Angewandte Chemie, 2019, 131, 3109-3113.	1.6	9
148	A Fully Energy-Autonomous Temperature-to-Time Converter Powered by a Triboelectric Energy Harvester for Biomedical Applications. IEEE Journal of Solid-State Circuits, 2021, 56, 2913-2923.	3.5	9
149	Increased photocatalytic activity of CuO/TiO 2 through broadband solar absorption heating under natural sunlight. Procedia Engineering, 2017, 215, 171-179.	1.2	8
150	Solarâ€Energy Capture: Visibleâ€toâ€NIR Photon Harvesting: Progressive Engineering of Catalysts for Solarâ€Powered Environmental Purification and Fuel Production (Adv. Mater. 47/2018). Advanced Materials, 2018, 30, 1870363.	11.1	7
151	Carbon Sponges: Selfâ€Contained Monolithic Carbon Sponges for Solarâ€Driven Interfacial Water Evaporation Distillation and Electricity Generation (Adv. Energy Mater. 16/2018). Advanced Energy Materials, 2018, 8, 1870074.	10.2	6
152	Corrosionâ€Mediated Selfâ€Assembly (CMSA): Direct Writing Towards Sculpturing of 3D Tunable Functional Nanostructures. Angewandte Chemie, 2015, 127, 16030-16034.	1.6	5
153	Simultaneous Activation–Exfoliation–Reassembly to Form Layered Carbon with Hierarchical Pores. ChemCatChem, 2017, 9, 2488-2495.	1.8	5
154	Functionalization of TiO 2 Nanofibers with Ag and Ag 2 S Nanoparticles for Enhanced Photocatalytic Hydrogen Generation. Procedia Engineering, 2017, 215, 188-194.	1.2	5
155	Solar Absorber Gel: Solar Absorber Gel: Localized Macro-Nano Heat Channeling for Efficient Plasmonic Au Nanoflowers Photothermic Vaporization and Triboelectric Generation (Adv. Energy) Tj ETQq1 1 0.7	′84 61.4 rg	BT \$ Overlock
156	High yield shape control of monodispersed Au nanostructures with 3D self-assembly ordering. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 358, 108-114.	2.3	4
157	Hierarchical Heterostructure of TiO 2 Nanosheets on CuO Nanowires for Enhanced Photocatalytic Performance. Procedia Engineering, 2017, 215, 180-187.	1.2	4
158	A 0.14 pJ/conversion Fully Energy-Autonomous Temperature-to-Time Converter for Biomedical Applications. IEEE Solid-State Circuits Letters, 2020, 3, 466-469.	1.3	4
159	The mean inner potential of GaN measured from nanowires using off-axis electron holography. Materials Research Society Symposia Proceedings, 2005, 892, 184.	0.1	3
160	Light-induced Remediation of Environmental Pollutants by Highly Adsorptive Activated Carbon Centered TiO 2 Nanoflowers. Procedia Engineering, 2017, 215, 152-162.	1.2	3
161	Aqueous Synthesis towards Vertically-Aligned and Selective Pattern of ZnO Nanostructures Arrays. Advanced Materials Research, 0, 67, 7-12.	0.3	2
162	Understanding the Growth of β-FeSi[sub 2] Films for Photovoltaic Applications: A Study Using Transmission Electron Microscopy. Journal of the Electrochemical Society, 2010, 157, H847.	1.3	2

#	Article	IF	CITATIONS
163	Electrocatalysis: Topotactic Engineering of Ultrathin 2D Nonlayered Nickel Selenides for Full Water Electrolysis (Adv. Energy Mater. 14/2018). Advanced Energy Materials, 2018, 8, 1870064.	10.2	2
164	Synthesis and field emission properties of well-aligned ZnO nanowires on buffer layer. Thin Solid Films, 2010, 518, e139-e142.	0.8	1
165	Tunable daughter molds from a single Si master grating mold. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2014, 32, 051601.	0.6	1
166	Porous silica/TiO 2 Nanocomposite for Collective Adsorption and Degradation Functionalities. Procedia Engineering, 2017, 215, 195-201.	1.2	1
167	Inorganic-organic Hybrid Membranes for Photocatalytic Hydrogen Generation and Volatile Organic Compound Degradation. Procedia Engineering, 2017, 215, 202-210.	1.2	1
168	Dynamic thermal trapping enables cross-species smart nanoparticle swarms. Science Advances, 2021, 7, .	4.7	1
169	THE GROWTH OF ALIGNED CARBON NANOTUBES ON FeNiCo CATALYST FILMS. International Journal of Nanoscience, 2002, 01, 79-85.	0.4	0
170	Enhanced Ferromagnetic Fe-rich Germanide Film Grown using Magnetron Sputtering Employing a Post-deposition Anneal. ECS Transactions, 2008, 16, 989-997.	0.3	0
171	Sputter-Deposited ZrO ₂ Gate Dielectric on High Mobility Epitaxial-GaAs/Ge Channel Material for Advanced CMOS Applications. Key Engineering Materials, 0, 443, 504-509.	0.4	0
172	Multi-junction ZnO Nanowires for Enhanced Surface Area and Light Trapping Solar Cells and Room Temperature Gas Sensing. Materials Research Society Symposia Proceedings, 2011, 1350, 1.	0.1	0
173	Titelbild: Disorder Engineering in Monolayer Nanosheets Enabling Photothermic Catalysis for Full Solar Spectrum (250–2500 nm) Harvesting (Angew. Chem. 10/2019). Angewandte Chemie, 2019, 131, 2933-2933.	1.6	0