
Antonio Dionisio Morata Barrado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7791563/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The production of ethylphenols in wine by yeasts of the genera Brettanomyces and Dekkera: A review. Food Chemistry, 2007, 102, 10-21.	4.2	278
2	Effects of pH, temperature and SO2 on the formation of pyranoanthocyanins during red wine fermentation with two species of Saccharomyces. International Journal of Food Microbiology, 2006, 106, 123-129.	2.1	118
3	Influence of sequential fermentation with Torulaspora delbrueckii and Saccharomyces cerevisiae on wine quality. LWT - Food Science and Technology, 2014, 59, 915-922.	2.5	101
4	Formation of vinylphenolic pyranoanthocyanins by Saccharomyces cerevisiae and Pichia guillermondii in red wines produced following different fermentation strategies. Food Chemistry, 2011, 124, 15-23.	4.2	99
5	Use of Schizosaccharomyces pombe and Torulaspora delbrueckii strains in mixed and sequential fermentations to improve red wine sensory quality. Food Research International, 2015, 76, 325-333.	2.9	96
6	Formation of pyranoanthocyanins by Schizosaccharomyces pombe during the fermentation of red must. International Journal of Food Microbiology, 2012, 159, 47-53.	2.1	93
7	Use of non-Saccharomyces yeasts and oenological tannin in red winemaking: Influence on colour, aroma and sensorial properties of young wines. Food Microbiology, 2018, 69, 51-63.	2.1	86
8	Lachancea thermotolerans Applications in Wine Technology. Fermentation, 2018, 4, 53.	1.4	83
9	Contribution of Non-Saccharomyces Yeasts to Wine Freshness. A Review. Biomolecules, 2020, 10, 34.	1.8	83
10	Applications of Metschnikowia pulcherrima in Wine Biotechnology. Fermentation, 2019, 5, 63.	1.4	81
11	Formation of vinylphenolic pyranoanthocyanins by selected yeasts fermenting red grape musts supplemented with hydroxycinnamic acids. International Journal of Food Microbiology, 2007, 116, 144-152.	2.1	71
12	Grape Processing by High Hydrostatic Pressure: Effect on Microbial Populations, Phenol Extraction and Wine Quality. Food and Bioprocess Technology, 2015, 8, 277-286.	2.6	71
13	Yeast influence on the formation of stable pigments in red winemaking. Food Chemistry, 2016, 197, 686-691.	4.2	64
14	Emerging preservation technologies in grapes for winemaking. Trends in Food Science and Technology, 2017, 67, 36-43.	7.8	64
15	Effect of Saccharomyces strains on the quality of red wines aged on lees. Food Chemistry, 2013, 139, 1044-1051.	4.2	63
16	Use of Schizosaccharomyces strains for wine fermentation—Effect on the wine composition and food safety. International Journal of Food Microbiology, 2016, 232, 63-72.	2.1	62
17	New applications for <i>Schizosaccharomyces pombe</i> in the alcoholic fermentation of red wines. International Journal of Food Science and Technology, 2012, 47, 2101-2108.	1.3	59
18	Use of non-Saccharomyces yeast strains coupled with ultrasound treatment as a novel technique to accelerate ageing on lees of red wines and its repercussion in sensorial parameters. LWT - Food Science and Technology, 2015, 64, 1255-1262.	2.5	51

Antonio Dionisio Morata

#	Article	IF	CITATIONS
19	Formation of polymeric pigments in red wines through sequential fermentation of flavanol-enriched musts with non-Saccharomyces yeasts. Food Chemistry, 2018, 239, 975-983.	4.2	49
20	Use of non-Saccharomyces in single-culture, mixed and sequential fermentation to improve red wine quality. European Food Research and Technology, 2017, 243, 2175-2185.	1.6	44
21	Grape Processing by High Hydrostatic Pressure: Effect on Use of Non-Saccharomyces in Must Fermentation. Food and Bioprocess Technology, 2016, 9, 1769-1778.	2.6	43
22	Minimization of ethylphenol precursors in red wines via the formation of pyranoanthocyanins by selected yeasts. International Journal of Food Microbiology, 2009, 132, 145-152.	2.1	42
23	The use of furfural as a metabolic inhibitor for reducing the alcohol content of model wines. European Food Research and Technology, 2011, 232, 663-669.	1.6	42
24	Application of ultrasound to improve lees ageing processes in red wines. Food Chemistry, 2018, 261, 157-163.	4.2	41
25	Schizosaccharomyces pombe: A Promising Biotechnology for Modulating Wine Composition. Fermentation, 2018, 4, 70.	1.4	41
26	Use of Ultra-High Pressure Homogenization processing in winemaking: Control of microbial populations in grape musts and effects in sensory quality. Innovative Food Science and Emerging Technologies, 2018, 50, 50-56.	2.7	38
27	Shortening the ageing on lees process in wines by using ultrasound and microwave treatments both combined with stirring and abrasion techniques. European Food Research and Technology, 2016, 242, 559-569.	1.6	37
28	Influence of Saccharomyces and non-Saccharomyces Yeasts in the Formation of Pyranoanthocyanins and Polymeric Pigments during Red Wine Making. Molecules, 2019, 24, 4490.	1.7	37
29	Reduction of 4-ethylphenol production in red wines using HCDC+ yeasts and cinnamyl esterases. Enzyme and Microbial Technology, 2013, 52, 99-104.	1.6	34
30	Wort fermentation and beer conditioning with selected non-Saccharomyces yeasts in craft beers. European Food Research and Technology, 2019, 245, 1229-1238.	1.6	34
31	Guidelines on reporting treatment conditions for emerging technologies in food processing. Critical Reviews in Food Science and Nutrition, 2022, 62, 5925-5949.	5.4	34
32	Cold pasteurisation of red wines with high hydrostatic pressure to control Dekkera/Brettanomyces: effect on both aromatic and chromatic quality of wine. European Food Research and Technology, 2012, 235, 147-154.	1.6	32
33	The Effects of Pre-Fermentative Addition of Oenological Tannins on Wine Components and Sensorial Qualities of Red Wine. Molecules, 2016, 21, 1445.	1.7	32
34	Pulsed Light Effect in Red Grape Quality and Fermentation. Food and Bioprocess Technology, 2017, 10, 1540-1547.	2.6	32
35	Zygosaccharomyces rouxii: Control Strategies and Applications in Food and Winemaking. Fermentation, 2018, 4, 69.	1.4	30
36	Lachancea thermotolerans as a tool to improve pH in red wines from warm regions. European Food Research and Technology, 2019, 245, 885-894.	1.6	30

ANTONIO DIONISIO MORATA

#	Article	IF	CITATIONS
37	Electron Beam Irradiation of Wine Grapes: Effect on Microbial Populations, Phenol Extraction and Wine Quality. Food and Bioprocess Technology, 2015, 8, 1845-1853.	2.6	27
38	Use of UHPH to Obtain Juices With Better Nutritional Quality and Healthier Wines With Low Levels of SO2. Frontiers in Nutrition, 2020, 7, 598286.	1.6	25
39	Making natural sparkling wines with non-Saccharomyces yeasts. European Food Research and Technology, 2018, 244, 925-935.	1.6	24
40	Characterization of polymeric pigments and pyranoanthocyanins formed in microfermentations of non- <i>Saccharomyces</i> yeasts. Journal of Applied Microbiology, 2016, 121, 1346-1356.	1.4	23
41	White wine processing by UHPH without SO2. Elimination of microbial populations and effect in oxidative enzymes, colloidal stability and sensory quality. Food Chemistry, 2020, 332, 127417.	4.2	23
42	Effect of Different Clarification Treatments on the Volatile Composition and Aromatic Attributes of †Italian Riesling' Icewine. Molecules, 2020, 25, 2657.	1.7	23
43	Industrial Performance of Several Lachancea thermotolerans Strains for pH Control in White Wines from Warm Areas. Microorganisms, 2020, 8, 830.	1.6	22
44	Biocompatibility in Ternary Fermentations With Lachancea thermotolerans, Other Non-Saccharomyces and Saccharomyces cerevisiae to Control pH and Improve the Sensory Profile of Wines From Warm Areas. Frontiers in Microbiology, 2021, 12, 656262.	1.5	22
45	Impact of Hanseniaspora Vineae in Alcoholic Fermentation and Ageing on Lees of High-Quality White Wine. Fermentation, 2020, 6, 66.	1.4	20
46	Non-Saccharomyces as Biotools to Control the Production of Off-Flavors in Wines. Molecules, 2021, 26, 4571.	1.7	20
47	Selection of Clycolytically Inefficient Yeasts for Reducing the Alcohol Content of Wines from Hot Regions. Food and Bioprocess Technology, 2012, 5, 2787-2796.	2.6	18
48	Sonication of Yeast Biomasses to Improve the Ageing on Lees Technique in Red Wines. Molecules, 2019, 24, 635.	1.7	18
49	Emerging Non-Thermal Technologies for the Extraction of Grape Anthocyanins. Antioxidants, 2021, 10, 1863.	2.2	18
50	Use of fumaric acid to control pH and inhibit malolactic fermentation in wines. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2020, 37, 228-238.	1.1	17
51	The Impact of Hanseniaspora vineae Fermentation and Ageing on Lees on the Terpenic Aromatic Profile of White Wines of the Albillo Variety. International Journal of Molecular Sciences, 2021, 22, 2195.	1.8	16
52	Effect of Lachancea thermotolerans on the Formation of Polymeric Pigments during Sequential Fermentation with Schizosaccharosmyces pombe and Saccharomyces cerevisiae. Molecules, 2018, 23, 2353.	1.7	15
53	Pulsed Light: Challenges of a Non-Thermal Sanitation Technology in the Winemaking Industry. Beverages, 2020, 6, 45.	1.3	15
54	Use of Lachancea thermotolerans for Biological vs. Chemical Acidification at Pilot-Scale in White Wines from Warm Areas. Fermentation, 2021, 7, 193.	1.4	15

#	Article	IF	CITATIONS
55	Influence of Yeasts in Wine Colour. , 0, , .		14
56	Pulsed Electric Fields to Improve the Use of Non-Saccharomyces Starters in Red Wines. Foods, 2021, 10, 1472.	1.9	12
57	Wine yeast selection in the Iberian Peninsula: <i>Saccharomyces</i> and non- <i>Saccharomyces</i> as drivers of innovation in Spanish and Portuguese wine industries. Critical Reviews in Food Science and Nutrition, 2023, 63, 10899-10927.	5.4	12
58	Effect on the autolysis process and the colouring matter of several commercial preparations with β-glucanase action in red winemaking. European Food Research and Technology, 2009, 229, 585-592.	1.6	11
59	Theoretical considerations about usage of metabolic inhibitors as possible alternative to reduce alcohol content of wines from hot areas. European Food Research and Technology, 2013, 237, 281-290.	1.6	11
60	Anthocyanins as Natural Pigments in Beverages. , 2019, , 383-428.		11
61	Applications of nanotechnology in the winemaking process. European Food Research and Technology, 2020, 246, 1533-1541.	1.6	11
62	Use of Non-Saccharomyces Yeasts in Bottle Fermentation of Aged Beers. , 2017, , .		10
63	Wine Spoilage Yeasts: Control Strategy. , 0, , .		10
64	Dairy and Nondairy-Based Beverages as a Vehicle for Probiotics, Prebiotics, and Symbiotics: Alternatives to Health Versus Disease Binomial Approach Through Food. , 2019, , 473-520.		10
65	Cabernet Sauvignon Red Must Processing by UHPH to Produce Wine Without SO2: the Colloidal Structure, Microbial and Oxidation Control, Colour Protection and Sensory Quality of the Wine. Food and Bioprocess Technology, 2022, 15, 620-634.	2.6	10
66	Study of the Interaction of Anthocyanins with Phenolic Aldehydes in a Model Wine Solution. ACS Omega, 2018, 3, 15575-15581.	1.6	9
67	Evolution of the Phenolic Fraction and Aromatic Profile of Red Wines Aged in Oak Barrels. ACS Omega, 2020, 5, 7235-7243.	1.6	9
68	Application of Hanseniaspora vineae Yeast in the Production of Rosé Wines from a Blend of Tempranillo and Albillo Grapes. Fermentation, 2021, 7, 141.	1.4	9
69	Craft Beers: Current Situation and Future Trends. , 0, , .		8
70	Grape Must Processed by Pulsed Electric Fields: Effect on the Inoculation and Development of Non-Saccharomyces Yeasts. Food and Bioprocess Technology, 2020, 13, 1087-1094.	2.6	8
71	Improvement of Must Fermentation from Late Harvest cv. Tempranillo Grapes Treated with Pulsed Light. Foods, 2021, 10, 1416.	1.9	8
72	Comparison between Membrane and Thermal Dealcoholization Methods: Their Impact on the Chemical Parameters, Volatile Composition, and Sensory Characteristics of Wines. Membranes, 2021, 11, 957.	1.4	8

ANTONIO DIONISIO MORATA

#	Article	IF	CITATIONS
73	Wood impregnation of yeast lees for winemaking. Food Chemistry, 2015, 171, 212-223.	4.2	7
74	Modification of the polyphenolic and aromatic fractions of red wines aged on lees assisted with ultrasound. International Journal of Food Science and Technology, 2019, 54, 2690-2699.	1.3	7
75	Maceration and Fermentation. , 2019, , 35-49.		7
76	Enological Repercussions of Non-Saccharomyces Species in Wine Biotechnology. Fermentation, 2019, 5, 72.	1.4	6
77	The Effect of Elicitors and Canopy Management in the Chemical Composition of Vitis vinifera Red Varieties in Warm and Hot Areas in Spain. Agronomy, 2021, 11, 1192.	1.3	6
78	Biotechnology of Ice Wine Production. , 2018, , 267-300.		5
79	Determination of Anthocyanin and Volatile Profile of Wines from Varieties Yiannoudi and Maratheftiko from the Island of Cyprus. Beverages, 2020, 6, 4.	1.3	5
80	Elaboration of an organic beverage based on grape juice with positive nutritional properties. Food Science and Nutrition, 2022, 10, 1768-1779.	1.5	5
81	Contribution of Grape Juice to Develop New Isotonic Drinks With Antioxidant Capacity and Interesting Sensory Properties. Frontiers in Nutrition, 0, 9, .	1.6	5
82	Strategies to Improve the Freshness in Wines from Warm Areas. , 0, , .		4
83	Biomodulation of Physicochemical Parameters, Aromas, and Sensory Profile of Craft Beers by Using Non- <i>Saccharomyces</i> Yeasts. ACS Omega, 2022, 7, 17822-17840.	1.6	4
84	Enological Repercussions of Non-Saccharomyces Species 2.0. Fermentation, 2020, 6, 110.	1.4	3
85	Use of Ultra High Pressure Homogenization to sterilize grape must. BIO Web of Conferences, 2019, 15, 02035.	0.1	2
86	Emerging Trends in Beverage Processing. Beverages, 2021, 7, 8.	1.3	2
87	Editorial: Non-thermal Technologies. Frontiers in Nutrition, 2021, 8, 752799.	1.6	2
88	Schizosaccharomyces isolation method. BIO Web of Conferences, 2014, 3, 02002.	0.1	1
89	The oenological interest of fumaric acid: Stop malolactic fermentation and preserve the freshness of wines. BIO Web of Conferences, 2019, 15, 02034.	0.1	1

90 New Trends in Aging on Lees. , 2019, , 163-176.

#	Article	IF	CITATIONS
91	Emerging Technologies to Increase Extraction, Control Microorganisms, and Reduce SO ₂ . , 0, , .		1
92	White must preservation by ultra-high pressure homogenization without SO2. , 2022, , 49-59.		1
93	Effect of metabolic inhibitors on the alcoholic fermentation: tolerant yeasts. , 0, , .		1
94	pH Control and Aroma Improvement Using the Non- <i>Saccharomyces Lachancea thermotolerans</i> and <i>Hanseniaspora</i> spp. Yeasts to Improve Wine Freshness in Warm Areas. , 0, , .		1
95	Use of pulsed electric fields in white grape processing. , 2022, , 61-71.		0
96	White must extraction methods. , 2022, , 39-47.		0
97	Biological acidification by Lachancea thermotolerans. , 2022, , 131-142.		0
98	Bioconversión y efecto de inhibidores metabólicos sobre la producción de metabolitos secundarios durante la fermentación alcohólica. , 0, , .		0
99	PILOT EXPERIENCE FOR THE CREATION OF A FOOD INNOVATION COMPETITION. SALINA INNOVA. EDULEARN Proceedings, 2019, , .	0.0	0
100	Effect of acidification biotechnologies on the production of volatile compounds, lactic acid and colour in red wines after the use of pulsed light pretreatment in grapes. European Food Research and Technology, 0, , .	1.6	0