List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7791521/publications.pdf Version: 2024-02-01

LADS PÃONNSTDAND

#	Article	IF	CITATIONS
1	Metallopeptidase inhibitor 1 (TIMPâ€1) promotes receptor tyrosine kinase câ€Kit signaling in colorectal cancer. Molecular Oncology, 2019, 13, 2646-2662.	2.1	11
2	FMS-like Tyrosine Kinase 3/FLT3: From Basic Science to Clinical Implications. Physiological Reviews, 2019, 99, 1433-1466.	13.1	109
3	The role of SRC family kinases in FLT3 signaling. International Journal of Biochemistry and Cell Biology, 2019, 107, 32-37.	1.2	20
4	The ALK inhibitor AZD3463 effectively inhibits growth of sorafenib-resistant acute myeloid leukemia. Blood Cancer Journal, 2019, 9, 5.	2.8	5
5	Internal tandem duplication mutations in the tyrosine kinase domain of FLT3 display a higher oncogenic potential than the activation loop D835Y mutation. Annals of Hematology, 2018, 97, 773-780.	0.8	15
6	SRC-like adaptor protein 2 (SLAP2) is a negative regulator of KIT-D816V-mediated oncogenic transformation. Scientific Reports, 2018, 8, 6405.	1.6	3
7	Bruton's tyrosine kinase potentiates ALK signaling and serves as a potential therapeutic target of neuroblastoma. Oncogene, 2018, 37, 6180-6194.	2.6	17
8	De novo activating mutations drive clonal evolution and enhance clonal fitness in KMT2A-rearranged leukemia. Nature Communications, 2018, 9, 1770.	5.8	38
9	XK-related protein 5 (XKR5) is a novel negative regulator of KIT/D816V-mediated transformation. Oncogenesis, 2018, 7, 48.	2.1	2
10	BEX3. , 2018, , 549-552.		0
11	GRB10. , 2018, , 2250-2253.		0
12	FMS-Like Tyrosine Kinase-3. , 2018, , 1787-1790.		0
13	Src-Like Adapter Protein (SLAP). , 2018, , 5145-5149.		0
14	Kit. , 2018, , 2772-2776.		0
15	Src-Like Adapter Protein 2 (SLAP2). , 2018, , 5149-5152.		0
16	Tyrosine 842 in the activation loop is required for full transformation by the oncogenic mutant FLT3-ITD. Cellular and Molecular Life Sciences, 2017, 74, 2679-2688.	2.4	12
17	KITD816V Induces SRC-Mediated Tyrosine Phosphorylation of MITF and Altered Transcription Program in Melanoma. Molecular Cancer Research, 2017, 15, 1265-1274.	1.5	15
18	The Src family kinase LCK cooperates with oncogenic FLT3/ITD in cellular transformation. Scientific Reports, 2017, 7, 13734.	1.6	19

#	Article	IF	CITATIONS
19	ABL2 suppresses FLT3-ITD-induced cell proliferation through negative regulation of AKT signaling. Oncotarget, 2017, 8, 12194-12202.	0.8	16
20	Internal Tandem Duplication (ITD) in the Tyrosine Kinase Domain of FLT3 Displays Higher Oncogenic Potential in Acute Myeloid Leukemia. Blood, 2016, 128, 5118-5118.	0.6	1
21	Src-like adaptor protein 2 (SLAP2) binds to and inhibits FLT3 signaling. Oncotarget, 2016, 7, 57770-57782.	0.8	18
22	FYN expression potentiates FLT3-ITD induced STAT5 signaling in acute myeloid leukemia. Oncotarget, 2016, 7, 9964-9974.	0.8	31
23	HIF2α contributes to antiestrogen resistance via positive bilateral crosstalk with EGFR in breast cancer cells. Oncotarget, 2016, 7, 11238-11250.	0.8	16
24	Expression of GADS enhances FLT3-induced mitogenic signaling. Oncotarget, 2016, 7, 14112-14124.	0.8	11
25	FMS-Like Tyrosine Kinase-3. , 2016, , 1-4.		0
26	BEX3., 2016,, 1-4.		0
27	GRB10. , 2016, , 1-4.		0
28	Src-Like Adapter Protein (SLAP). , 2016, , 1-4.		0
29	Src-Like Adapter Protein 2 (SLAP2). , 2016, , 1-4.		0
30	Tyrosine 842 Residue in the Activation Loop of FLT3-ITD Is Indespensible for Oncogenic Transformation. Blood, 2016, 128, 1561-1561.	0.6	0
31	Loss of Src-like Adaptor Protein 2 Expression Increases the Transforming Potential of Oncogenic FLT3-ITD. Blood, 2016, 128, 5106-5106.	0.6	0
32	The Phosphatases STS1 and STS2 Regulate Hematopoietic Stem and Progenitor Cell Fitness. Stem Cell Reports, 2015, 5, 633-646.	2.3	11
33	PI3 kinase is indispensable for oncogenic transformation by the V560D mutant of c-Kit in a kinase-independent manner. Cellular and Molecular Life Sciences, 2015, 72, 4399-4407.	2.4	7
34	The role of HOXB2 and HOXB3 in acute myeloid leukemia. Biochemical and Biophysical Research Communications, 2015, 467, 742-747.	1.0	33
35	Role of SRC-like adaptor protein (SLAP) in immune and malignant cell signaling. Cellular and Molecular Life Sciences, 2015, 72, 2535-2544.	2.4	22
36	Brain-Expressed X-linked (BEX) proteins in human cancers. Biochimica Et Biophysica Acta: Reviews on Cancer, 2015, 1856, 226-233.	3.3	30

#	Article	IF	CITATIONS
37	The PDGFR Receptor Family. , 2015, , 373-538.		2
38	BEX1 acts as a tumor suppressor in acute myeloid leukemia. Oncotarget, 2015, 6, 21395-21405.	0.8	25
39	Aberrant Activation of the PI3K/mTOR Pathway Promotes Resistance to Sorafenib in AML. Blood, 2015, 126, 2472-2472.	0.6	0
40	Src-Like Adaptor Protein (SLAP) differentially regulates normal and oncogenic c-Kit signaling. Journal of Cell Science, 2014, 127, 653-62.	1.2	30
41	Keratin 19 expression correlates with poor prognosis in breast cancer. Molecular Biology Reports, 2014, 41, 7729-7735.	1.0	35
42	SOCS6 is a selective suppressor of receptor tyrosine kinase signaling. Tumor Biology, 2014, 35, 10581-10589.	0.8	30
43	Src-Like Adaptor Protein (SLAP) differentially regulates normal and oncogenic c-Kit signaling. Journal of Cell Science, 2014, 127, 2376-2376.	1.2	1
44	SOCS proteins in regulation of receptor tyrosine kinase signaling. Cellular and Molecular Life Sciences, 2014, 71, 3297-3310.	2.4	81
45	SYK Is a Critical Regulator of FLT3 in Acute Myeloid Leukemia. Cancer Cell, 2014, 25, 226-242.	7.7	126
46	EPO-independent functional EPO receptor in breast cancer enhances estrogen receptor activity and promotes cell proliferation. Biochemical and Biophysical Research Communications, 2014, 445, 163-169.	1.0	14
47	The basic helix-loop-helix (bHLH) proteins in breast cancer progression. Medical Oncology, 2013, 30, 666.	1.2	2
48	Enhanced SOX10 and KIT expression in cutaneous melanoma. Medical Oncology, 2013, 30, 648.	1.2	9
49	Deregulation of protein phosphatase expression in acute myeloid leukemia. Medical Oncology, 2013, 30, 517.	1.2	23
50	Protein kinase C (PKC) as a drug target in chronic lymphocytic leukemia. Medical Oncology, 2013, 30, 757.	1.2	29
51	Protein kinase C expression is deregulated in chronic lymphocytic leukemia. Leukemia and Lymphoma, 2013, 54, 2288-2290.	0.6	14
52	Differential activity of c-KIT splice forms is controlled by extracellular peptide insert length. Cellular Signalling, 2013, 25, 2231-2238.	1.7	8
53	The presence or absence of IL-3 during long-term culture of Flt3-ITD and c-Kit-D816V expressing Ba/F3 cells influences signaling outcome. Experimental Hematology, 2013, 41, 585-587.	0.2	15
54	The tyrosine kinase CSK associates with FLT3 and c-Kit receptors and regulates downstream signaling. Cellular Signalling, 2013, 25, 1852-1860.	1.7	30

#	Article	IF	CITATIONS
55	FLT3 mutations in patients with childhood acute lymphoblastic leukemia (ALL). Medical Oncology, 2013, 30, 462.	1.2	21
56	Suppressor of cytokine signaling 2 (SOCS2) associates with FLT3 and negatively regulates downstream signaling. Molecular Oncology, 2013, 7, 693-703.	2.1	52
57	FLT3 signals via the adapter protein Grb10 and overexpression of Grb10 leads to aberrant cell proliferation in acute myeloid leukemia. Molecular Oncology, 2013, 7, 402-418.	2.1	45
58	Phosphorylation of the Activation Loop Tyrosine 823 in c-Kit Is Crucial for Cell Survival and Proliferation. Journal of Biological Chemistry, 2013, 288, 22460-22468.	1.6	29
59	Suppressor of Cytokine Signaling 6 (SOCS6) Negatively Regulates Flt3 Signal Transduction through Direct Binding to Phosphorylated Tyrosines 591 and 919 of Flt3. Journal of Biological Chemistry, 2012, 287, 36509-36517.	1.6	62
60	SRC is a signaling mediator in FLT3-ITD– but not in FLT3-TKD–positive AML. Blood, 2012, 119, 4026-4033.	0.6	54
61	Adaptor protein Lnk binds to and inhibits normal and leukemic FLT3. Blood, 2012, 120, 3310-3317.	0.6	38
62	Stem Cell Factor Receptor/c-Kit: From Basic Science to Clinical Implications. Physiological Reviews, 2012, 92, 1619-1649.	13.1	634
63	HIF-2α Expression Is Suppressed in SCLC Cells, Which Survive in Moderate and Severe Hypoxia When HIF-1α Is Repressed. American Journal of Pathology, 2012, 180, 494-504.	1.9	17
64	3,4-Diarylmaleimides—a novel class of kinase inhibitors—effectively induce apoptosis in FLT3-ITD-dependent cells. Annals of Hematology, 2012, 91, 331-344.	0.8	5
65	Src-Like Adaptor Protein (SLAP) Binds to the Receptor Tyrosine Kinase Flt3 and Modulates Receptor Stability and Downstream Signaling. PLoS ONE, 2012, 7, e53509.	1.1	40
66	Inhibition of MEK5 by BIX02188 induces apoptosis in cells expressing the oncogenic mutant FLT3-ITD. Biochemical and Biophysical Research Communications, 2011, 412, 307-312.	1.0	26
67	Impact of gene dosage, loss of wild-type allele, and FLT3 ligand on Flt3-ITD–induced myeloproliferation. Blood, 2011, 118, 3613-3621.	0.6	26
68	Irreversible panâ€ERBB inhibitor canertinib elicits antiâ€leukaemic effects and induces the regression of FLT3â€ITD transformed cells in mice. British Journal of Haematology, 2011, 155, 198-208.	1.2	7
69	Protein-tyrosine Phosphatase DEP-1 Controls Receptor Tyrosine Kinase FLT3 Signaling. Journal of Biological Chemistry, 2011, 286, 10918-10929.	1.6	61
70	Structural Basis for c-KIT Inhibition by the Suppressor of Cytokine Signaling 6 (SOCS6) Ubiquitin Ligase. Journal of Biological Chemistry, 2011, 286, 480-490.	1.6	57
71	C-KIT Signaling Depends on Microphthalmia-Associated Transcription Factor for Effects on Cell Proliferation. PLoS ONE, 2011, 6, e24064.	1.1	42

Signaling by the Platelet-Derived Growth Factor Receptor Family. , 2010, , 427-434.

4

#	Article	IF	CITATIONS
73	The D816V Mutation of c-Kit Circumvents a Requirement for Src Family Kinases in c-Kit Signal Transduction. Journal of Biological Chemistry, 2009, 284, 11039-11047.	1.6	64
74	A novel molecular mechanism of primary resistance to FLT3-kinase inhibitors in AML. Blood, 2009, 113, 4063-4073.	0.6	106
75	Oncogenic Flt3 receptors display different specificity and kinetics of autophosphorylation. Experimental Hematology, 2009, 37, 979-989.	0.2	35
76	The c-Kit/D816V mutation eliminates the differences in signal transduction and biological responses between two isoforms of c-Kit. Cellular Signalling, 2009, 21, 413-418.	1.7	28
77	Oncogenic signaling from the hematopoietic growth factor receptors c-Kit and Flt3. Cellular Signalling, 2009, 21, 1717-1726.	1.7	111
78	A role of Gab2 association in Flt3 ITD mediated Stat5 phosphorylation and cell survival. British Journal of Haematology, 2009, 146, 193-202.	1.2	36
79	The Characterization of Epithelial and Stromal Subsets of Candidate Stem/Progenitor Cells in the Human Adult Prostate. European Urology, 2008, 53, 524-532.	0.9	25
80	Stem cell factor induces HIF-1α at normoxia in hematopoietic cells. Biochemical and Biophysical Research Communications, 2008, 377, 98-103.	1.0	66
81	Gab2 Is Involved in Differential Phosphoinositide 3-Kinase Signaling by Two Splice Forms of c-Kit. Journal of Biological Chemistry, 2008, 283, 27444-27451.	1.6	48
82	Haematopoietic progenitor cells utilise conventional PKC to suppress PKB/Akt activity in response to c-Kit stimulation. British Journal of Haematology, 2007, 136, 260-268.	1.2	16
83	Grb2 mediates negative regulation of stem cell factor receptor/c-Kit signaling by recruitment of Cbl. Experimental Cell Research, 2007, 313, 3935-3942.	1.2	36
84	Identification of Tyrosine Residues of Importance for Survival Signaling through the Scaffolding Protein Gab2 in Both Wild-Type FLT3 and the FLT3-ITD Blood, 2007, 110, 1622-1622.	0.6	0
85	Identification of Y589 and Y599 in the juxtamembrane domain of Flt3 as ligand-induced autophosphorylation sites involved in binding of Src family kinases and the protein tyrosine phosphatase SHP2. Blood, 2006, 108, 1542-1550.	0.6	65
86	Direct binding of Cbl to Tyr568 and Tyr936 of the stem cell factor receptor/c-Kit is required for ligand-induced ubiquitination, internalization and degradation. Biochemical Journal, 2006, 399, 59-67.	1.7	77
87	Receptor association and tyrosine phosphorylation of S6 kinases. FEBS Journal, 2006, 273, 2023-2036.	2.2	25
88	Co expression of SCF and KIT in gastrointestinal stromal tumours (GISTs) suggests an autocrine/paracrine mechanism. British Journal of Cancer, 2006, 94, 1180-1185.	2.9	39
89	Interaction and functional cooperation between the serine/threonine kinase bone morphogenetic protein type II receptor with the tyrosine kinase stem cell factor receptor. Journal of Cellular Physiology, 2006, 206, 457-467.	2.0	22
90	The Stem Cell Factor Receptor/c-Kit as a Drug Target in Cancer. Current Cancer Drug Targets, 2006, 6, 65-75.	0.8	81

#	Article	IF	CITATIONS
91	Negative Regulation of c-Kit Is Dependent on Direct Binding of Cbl to Tyrosines 568 and 936 Blood, 2005, 106, 2288-2288.	0.6	0
92	Identification of Two Src Recruitment Sites in the Juxtamembrane Region of Flt3 with Opposing Effects on Flt3-Ligand-Induced Signaling Blood, 2005, 106, 2289-2289.	0.6	0
93	Splice Form Specific Signaling of the Hematopoietic Growth Factor Receptor c-Kit Blood, 2005, 106, 4284-4284.	0.6	0
94	Platelet-derived Growth Factor Stimulates Membrane Lipid Synthesis Through Activation of Phosphatidylinositol 3-Kinase and Sterol Regulatory Element-binding Proteins. Journal of Biological Chemistry, 2004, 279, 35392-35402.	1.6	107
95	Site-Selective Regulation of Platelet-Derived Growth Factor Î ² Receptor Tyrosine Phosphorylation by T-Cell Protein Tyrosine Phosphatase. Molecular and Cellular Biology, 2004, 24, 2190-2201.	1.1	87
96	Gab1 Contributes to Cytoskeletal Reorganization and Chemotaxis in Response to Platelet-derived Growth Factor. Journal of Biological Chemistry, 2004, 279, 17897-17904.	1.6	35
97	p38-MAPK Signals Survival by Phosphorylation of Caspase-8 and Caspase-3 in Human Neutrophils. Journal of Experimental Medicine, 2004, 199, 449-458.	4.2	184
98	Signal transduction via the stem cell factor receptor/c-Kit. Cellular and Molecular Life Sciences, 2004, 61, 2535-2548.	2.4	377
99	Identification of a Ser/Thr cluster in the C-terminal domain of the human prostaglandin receptor EP4 that is essential for agonist-induced beta-arrestin1 recruitment but differs from the apparent principal phosphorylation site. Biochemical Journal, 2004, 379, 573-585.	1.7	22
100	Chk1 regulates the S phase checkpoint by coupling the physiological turnover and ionizing radiation-induced accelerated proteolysis of Cdc25A. Cancer Cell, 2003, 3, 247-258.	7.7	514
101	Identification of phosphorylation sites within the SH3 domains of Tec family tyrosine kinases. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2003, 1645, 123-132.	1.1	36
102	Identification of Protein Tyrosine Phosphatases Associating with the PDGF Receptorâ€. Biochemistry, 2003, 42, 2691-2699.	1.2	48
103	Ezrin is a substrate for Lck in T cells. FEBS Letters, 2003, 535, 82-86.	1.3	36
104	Differential tyrosine phosphorylation of fibroblast growth factor (FGF) receptor-1 and receptor proximal signal transduction in response to FGF-2 and heparin. Experimental Cell Research, 2003, 287, 190-198.	1.2	33
105	Identification of Tyr900 in the kinase domain of c-Kit as a Src-dependent phosphorylation site mediating interaction with c-Crk. Experimental Cell Research, 2003, 288, 110-118.	1.2	37
106	Phosphorylation of the Potyvirus Capsid Protein by Protein Kinase CK2 and Its Relevance for Virus Infection [W]. Plant Cell, 2003, 15, 2124-2139.	3.1	119
107	Src Family Kinases Are Involved in the Differential Signaling from Two Splice Forms of c-Kit. Journal of Biological Chemistry, 2003, 278, 9159-9166.	1.6	83
108	Dysfunctionality of a tobacco mosaic virus movement protein mutant mimicking threonine 104 phosphorylation. Journal of General Virology, 2003, 84, 727-732.	1.3	34

#	Article	IF	CITATIONS
109	The adapter protein APS associates with the multifunctional docking sites Tyr-568 and Tyr-936 in c-Kit. Biochemical Journal, 2003, 370, 1033-1038.	1.7	49
110	Ligand-induced recruitment of Na+/H+-exchanger regulatory factor to the PDGF (platelet-derived) Tj ETQq0 0 0) rgBT /Over 1.7	rlock 10 Tf 50 43
111	Different Effects of High and Low Shear Stress on Platelet-Derived Growth Factor Isoform Release by Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 405-411.	1.1	61
112	Ser-474 is the major target of insulin-mediated phosphorylation of protein kinase B β in primary rat adipocytes. Cellular Signalling, 2002, 14, 175-182.	1.7	7
113	SHP-2 is involved in heterodimer specific loss of phosphorylation of Tyr771 in the PDCF β-receptor. Oncogene, 2002, 21, 1870-1875.	2.6	37
114	Phosphatidylinositol 3 kinase contributes to the transformation of hematopoietic cells by the D816V c-Kit mutant. Blood, 2001, 98, 1365-1373.	0.6	123
115	Mechanisms of platelet-derived growth factor-induced chemotaxis. International Journal of Cancer, 2001, 91, 757-762.	2.3	140
116	Phosphorylation-dependent and -independent functions of p130 cooperate to evoke a sustained G1 block. EMBO Journal, 2001, 20, 422-432.	3.5	91
117	Activation of Ras, Raf-1 and protein kinase C in differentiating human neuroblastoma cells after treatment with phorbolester and NGF. Cellular Signalling, 2001, 13, 95-104.	1.7	16
118	DAPP1 undergoes a PI 3-kinase-dependent cycle of plasma-membrane recruitment and endocytosis upon cell stimulation. Current Biology, 2000, 10, 1403-1412.	1.8	43
119	TNF-α Suppresses the PDGF β-Receptor Kinase. Experimental Cell Research, 2000, 258, 65-71.	1.2	6
120	Distinct versus redundant properties among members of the INK4 family of cyclin-dependent kinase inhibitors. FEBS Letters, 2000, 470, 161-166.	1.3	68
121	Overactivation of Phospholipase C-γ1 Renders Platelet-derived Growth Factor β-Receptor-expressing Cells Independent of the Phosphatidylinositol 3-Kinase Pathway for Chemotaxis. Journal of Biological Chemistry, 1999, 274, 22089-22094.	1.6	37
122	Increased mitogenicity of an $\hat{l}\pm\hat{l}^2$ heterodimeric PDGF receptor complex correlates with lack of RasGAP binding. Oncogene, 1999, 18, 2481-2488.	2.6	61
123	SHP-2 binds to Tyr763 and Tyr1009 in the PDGF \hat{l}^2 -receptor and mediates PDGF-induced activation of the Ras/MAP kinase pathway and chemotaxis. Oncogene, 1999, 18, 3696-3702.	2.6	66
124	Phosphorylation of Shc by Src family kinases is necessary for stem cell factor receptor/c-kit mediated activation of the Ras/MAP kinase pathway and c-fos induction. Oncogene, 1999, 18, 5546-5553.	2.6	184
125	Characterization of the chronic myelomonocytic leukemia associated TEL-PDGFβR fusion protein. Oncogene, 1999, 18, 7055-7062.	2.6	36
126	Identification of Tyr-703 and Tyr-936 as the primary association sites for Grb2 and Grb7 in the c-Kit/stem cell factor receptor. Biochemical Journal, 1999, 341, 211-216.	1.7	94

#	Article	IF	CITATIONS
127	Functional co-operation between the subunits in heterodimeric platelet-derived growth factor receptor complexes. Biochemical Journal, 1999, 341, 523-528.	1.7	16
128	Identification of Tyr-703 and Tyr-936 as the primary association sites for Grb2 and Grb7 in the c-Kit/stem cell factor receptor. Biochemical Journal, 1999, 341, 211.	1.7	43
129	Functional co-operation between the subunits in heterodimeric platelet-derived growth factor receptor complexes. Biochemical Journal, 1999, 341, 523.	1.7	5
130	Identification of Tyr-762 in the platelet-derived growth factor α-receptor as the binding site for Crk proteins. Oncogene, 1998, 16, 1229-1239.	2.6	51
131	Signal transduction via platelet-derived growth factor receptors. Biochimica Et Biophysica Acta: Reviews on Cancer, 1998, 1378, F79-F113.	3.3	376
132	Molecular Basis for the Dominant White Phenotype in the Domestic Pig. Genome Research, 1998, 8, 826-833.	2.4	195
133	Identification of Novel Phosphorylation Sites in Hormone-sensitive Lipase That Are Phosphorylated in Response to Isoproterenol and Govern Activation Properties in Vitro. Journal of Biological Chemistry, 1998, 273, 215-221.	1.6	399
134	Phosphorylation Site-Specific Inhibition of Platelet-Derived Growth Factor β-Receptor Autophosphorylation by the Receptor Blocking Tyrphostin AG1296. Biochemistry, 1997, 36, 6260-6269.	1.2	126
135	Association of Coatomer Proteins with the β-Receptor for Platelet-Derived Growth Factor. Biochemical and Biophysical Research Communications, 1997, 235, 455-460.	1.0	7
136	PDGF-Induced Phosphorylation of Tyr28 in the N-Terminus of Fyn Affects Fyn Activation. Biochemical and Biophysical Research Communications, 1997, 241, 355-362.	1.0	23
137	Phosphorylation of a 72-kDa protein in PDGF-stimulated cells which forms complex with c-Crk, c-Fyn and Eps15. FEBS Letters, 1997, 409, 195-200.	1.3	8
138	Involvement of Phosphatidylinositol 3'-Kinase in Stem-Cell-Factor-Induced Phospholipase D Activation and Arachidonic Acid Release. FEBS Journal, 1997, 248, 149-155.	0.2	40
139	Structural Determinants in the Platelet-derived Growth Factor α-Receptor Implicated in Modulation of Chemotaxis. Journal of Biological Chemistry, 1996, 271, 5101-5111.	1.6	45
140	Identification of the Site in the cGMP-inhibited Phosphodiesterase Phosphorylated in Adipocytes in Response to Insulin and Isoproterenol. Journal of Biological Chemistry, 1996, 271, 11575-11580.	1.6	55
141	O-5: Identification of the site in the cGMP-inhibited phosphodiesterase phosphorylated in adipocytes in response to insulin and isoproterenol. Experimental and Clinical Endocrinology and Diabetes, 1996, 104, 10-11.	0.6	7
142	Identification of the Major Phosphorylation Sites for Protein Kinase C in Kit/Stem Cell Factor Receptor in Vitro and in Intact Cells. Journal of Biological Chemistry, 1995, 270, 14192-14200.	1.6	83
143	Demonstration of Functionally Different Interactions between Phospholipase C-γ and the Two Types of Platelet-derived Growth Factor Receptors. Journal of Biological Chemistry, 1995, 270, 7773-7781.	1.6	46
144	A Unique Autophosphorylation Site in the Platelet-Derived Growth Factor alpha Receptor from a Heterodimeric Receptor Complex. FEBS Journal, 1994, 225, 29-41.	0.2	47

#	Article	IF	CITATIONS
145	[30] Purification of platelet-derived growth factor \hat{I}^2 receptor from porcine uterus. Methods in Enzymology, 1991, 200, 371-378.	0.4	4
146	Characterization of the platelet-derived growth factor β-receptor kinase activity by use of synthetic peptides. Biochemical and Biophysical Research Communications, 1990, 167, 1333-1340.	1.0	5
147	Platelet-Derived Growth Factor B Type Receptor. , 1990, , 303-314.		0
148	Platelet-derived growth factor receptors in the kidney—Upregulated expression in inflammation. Kidney International, 1989, 36, 1099-1102.	2.6	125
149	A glioma-derived PDGF a chain homodimer has different functional activities from a PDGF AB heterodimer purified from human platelets. Cell, 1988, 52, 791-799.	13.5	260
150	[1] Purification of human platelet-derived growth factor. Methods in Enzymology, 1987, 147, 3-13.	0.4	53
151	Stimulation of tyrosine phosphorylation by platelet-derived growth factor. Biochemical Society Transactions, 1984, 12, 759-762.	1.6	4
152	Characterization of the fibroblast receptor for platelet-derived growth factor. Cell Biology International Reports, 1983, 7, 543-544.	0.7	2