Lars Rönnstrand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7791521/publications.pdf

Version: 2024-02-01

152 papers 7,975 citations

50170 46 h-index 85 g-index

155 all docs

155 docs citations

155 times ranked 10050 citing authors

#	Article	IF	CITATIONS
1	Stem Cell Factor Receptor/c-Kit: From Basic Science to Clinical Implications. Physiological Reviews, 2012, 92, 1619-1649.	13.1	634
2	Chk1 regulates the S phase checkpoint by coupling the physiological turnover and ionizing radiation-induced accelerated proteolysis of Cdc25A. Cancer Cell, 2003, 3, 247-258.	7.7	514
3	Identification of Novel Phosphorylation Sites in Hormone-sensitive Lipase That Are Phosphorylated in Response to Isoproterenol and Govern Activation Properties in Vitro. Journal of Biological Chemistry, 1998, 273, 215-221.	1.6	399
4	Signal transduction via the stem cell factor receptor/c-Kit. Cellular and Molecular Life Sciences, 2004, 61, 2535-2548.	2.4	377
5	Signal transduction via platelet-derived growth factor receptors. Biochimica Et Biophysica Acta: Reviews on Cancer, 1998, 1378, F79-F113.	3.3	376
6	A glioma-derived PDGF a chain homodimer has different functional activities from a PDGF AB heterodimer purified from human platelets. Cell, 1988, 52, 791-799.	13.5	260
7	Molecular Basis for the Dominant White Phenotype in the Domestic Pig. Genome Research, 1998, 8, 826-833.	2.4	195
8	Phosphorylation of Shc by Src family kinases is necessary for stem cell factor receptor/c-kit mediated activation of the Ras/MAP kinase pathway and c-fos induction. Oncogene, 1999, 18, 5546-5553.	2.6	184
9	p38-MAPK Signals Survival by Phosphorylation of Caspase-8 and Caspase-3 in Human Neutrophils. Journal of Experimental Medicine, 2004, 199, 449-458.	4.2	184
10	Mechanisms of platelet-derived growth factor-induced chemotaxis. International Journal of Cancer, 2001, 91, 757-762.	2.3	140
11	Phosphorylation Site-Specific Inhibition of Platelet-Derived Growth Factor Î ² -Receptor Autophosphorylation by the Receptor Blocking Tyrphostin AG1296. Biochemistry, 1997, 36, 6260-6269.	1.2	126
12	SYK Is a Critical Regulator of FLT3 in Acute Myeloid Leukemia. Cancer Cell, 2014, 25, 226-242.	7.7	126
13	Platelet-derived growth factor receptors in the kidneyâ€"Upregulated expression in inflammation. Kidney International, 1989, 36, 1099-1102.	2.6	125
14	Phosphatidylinositol 3 kinase contributes to the transformation of hematopoietic cells by the D816V c-Kit mutant. Blood, 2001, 98, 1365-1373.	0.6	123
15	Phosphorylation of the Potyvirus Capsid Protein by Protein Kinase CK2 and Its Relevance for Virus Infection [W]. Plant Cell, 2003, 15, 2124-2139.	3.1	119
16	Oncogenic signaling from the hematopoietic growth factor receptors c-Kit and Flt3. Cellular Signalling, 2009, 21, 1717-1726.	1.7	111
17	FMS-like Tyrosine Kinase 3/FLT3: From Basic Science to Clinical Implications. Physiological Reviews, 2019, 99, 1433-1466.	13.1	109
18	Platelet-derived Growth Factor Stimulates Membrane Lipid Synthesis Through Activation of Phosphatidylinositol 3-Kinase and Sterol Regulatory Element-binding Proteins. Journal of Biological Chemistry, 2004, 279, 35392-35402.	1.6	107

#	Article	IF	CITATIONS
19	A novel molecular mechanism of primary resistance to FLT3-kinase inhibitors in AML. Blood, 2009, 113, 4063-4073.	0.6	106
20	Identification of Tyr-703 and Tyr-936 as the primary association sites for Grb2 and Grb7 in the c-Kit/stem cell factor receptor. Biochemical Journal, 1999, 341, 211-216.	1.7	94
21	Phosphorylation-dependent and -independent functions of p130 cooperate to evoke a sustained G1 block. EMBO Journal, 2001, 20, 422-432.	3.5	91
22	Site-Selective Regulation of Platelet-Derived Growth Factor \hat{l}^2 Receptor Tyrosine Phosphorylation by T-Cell Protein Tyrosine Phosphatase. Molecular and Cellular Biology, 2004, 24, 2190-2201.	1.1	87
23	Identification of the Major Phosphorylation Sites for Protein Kinase C in Kit/Stem Cell Factor Receptor in Vitro and in Intact Cells. Journal of Biological Chemistry, 1995, 270, 14192-14200.	1.6	83
24	Src Family Kinases Are Involved in the Differential Signaling from Two Splice Forms of c-Kit. Journal of Biological Chemistry, 2003, 278, 9159-9166.	1.6	83
25	The Stem Cell Factor Receptor/c-Kit as a Drug Target in Cancer. Current Cancer Drug Targets, 2006, 6, 65-75.	0.8	81
26	SOCS proteins in regulation of receptor tyrosine kinase signaling. Cellular and Molecular Life Sciences, 2014, 71, 3297-3310.	2.4	81
27	Direct binding of Cbl to Tyr568 and Tyr936 of the stem cell factor receptor/c-Kit is required for ligand-induced ubiquitination, internalization and degradation. Biochemical Journal, 2006, 399, 59-67.	1.7	77
28	Distinct versus redundant properties among members of the INK4 family of cyclin-dependent kinase inhibitors. FEBS Letters, 2000, 470, 161-166.	1.3	68
29	SHP-2 binds to Tyr763 and Tyr1009 in the PDGF \hat{l}^2 -receptor and mediates PDGF-induced activation of the Ras/MAP kinase pathway and chemotaxis. Oncogene, 1999, 18, 3696-3702.	2.6	66
30	Stem cell factor induces HIF- $1\hat{l}_{\pm}$ at normoxia in hematopoietic cells. Biochemical and Biophysical Research Communications, 2008, 377, 98-103.	1.0	66
31	Identification of Y589 and Y599 in the juxtamembrane domain of Flt3 as ligand-induced autophosphorylation sites involved in binding of Src family kinases and the protein tyrosine phosphatase SHP2. Blood, 2006, 108, 1542-1550.	0.6	65
32	The D816V Mutation of c-Kit Circumvents a Requirement for Src Family Kinases in c-Kit Signal Transduction. Journal of Biological Chemistry, 2009, 284, 11039-11047.	1.6	64
33	Suppressor of Cytokine Signaling 6 (SOCS6) Negatively Regulates Flt3 Signal Transduction through Direct Binding to Phosphorylated Tyrosines 591 and 919 of Flt3. Journal of Biological Chemistry, 2012, 287, 36509-36517.	1.6	62
34	Increased mitogenicity of an $\hat{l}\pm\hat{l}^2$ heterodimeric PDGF receptor complex correlates with lack of RasGAP binding. Oncogene, 1999, 18, 2481-2488.	2.6	61
35	Different Effects of High and Low Shear Stress on Platelet-Derived Growth Factor Isoform Release by Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 405-411.	1.1	61
36	Protein-tyrosine Phosphatase DEP-1 Controls Receptor Tyrosine Kinase FLT3 Signaling. Journal of Biological Chemistry, 2011, 286, 10918-10929.	1.6	61

#	Article	IF	Citations
37	Structural Basis for c-KIT Inhibition by the Suppressor of Cytokine Signaling 6 (SOCS6) Ubiquitin Ligase. Journal of Biological Chemistry, 2011, 286, 480-490.	1.6	57
38	Identification of the Site in the cGMP-inhibited Phosphodiesterase Phosphorylated in Adipocytes in Response to Insulin and Isoproterenol. Journal of Biological Chemistry, 1996, 271, 11575-11580.	1.6	55
39	SRC is a signaling mediator in FLT3-ITD– but not in FLT3-TKD–positive AML. Blood, 2012, 119, 4026-4033.	0.6	54
40	[1] Purification of human platelet-derived growth factor. Methods in Enzymology, 1987, 147, 3-13.	0.4	53
41	Suppressor of cytokine signaling 2 (SOCS2) associates with FLT3 and negatively regulates downstream signaling. Molecular Oncology, 2013, 7, 693-703.	2.1	52
42	Identification of Tyr-762 in the platelet-derived growth factor \hat{l}_{\pm} -receptor as the binding site for Crk proteins. Oncogene, 1998, 16, 1229-1239.	2.6	51
43	The adapter protein APS associates with the multifunctional docking sites Tyr-568 and Tyr-936 in c-Kit. Biochemical Journal, 2003, 370, 1033-1038.	1.7	49
44	Identification of Protein Tyrosine Phosphatases Associating with the PDGF Receptorâ€. Biochemistry, 2003, 42, 2691-2699.	1.2	48
45	Gab2 Is Involved in Differential Phosphoinositide 3-Kinase Signaling by Two Splice Forms of c-Kit. Journal of Biological Chemistry, 2008, 283, 27444-27451.	1.6	48
46	A Unique Autophosphorylation Site in the Platelet-Derived Growth Factor alpha Receptor from a Heterodimeric Receptor Complex. FEBS Journal, 1994, 225, 29-41.	0.2	47
47	Demonstration of Functionally Different Interactions between Phospholipase C- \hat{I}^3 and the Two Types of Platelet-derived Growth Factor Receptors. Journal of Biological Chemistry, 1995, 270, 7773-7781.	1.6	46
48	Structural Determinants in the Platelet-derived Growth Factor \hat{l}_{\pm} -Receptor Implicated in Modulation of Chemotaxis. Journal of Biological Chemistry, 1996, 271, 5101-5111.	1.6	45
49	FLT3 signals via the adapter protein Grb10 and overexpression of Grb10 leads to aberrant cell proliferation in acute myeloid leukemia. Molecular Oncology, 2013, 7, 402-418.	2.1	45
50	Identification of Tyr-703 and Tyr-936 as the primary association sites for Grb2 and Grb7 in the c-Kit/stem cell factor receptor. Biochemical Journal, 1999, 341, 211.	1.7	43
51	DAPP1 undergoes a PI 3-kinase-dependent cycle of plasma-membrane recruitment and endocytosis upon cell stimulation. Current Biology, 2000, 10, 1403-1412.	1.8	43
52	Ligand-induced recruitment of Na+/H+-exchanger regulatory factor to the PDGF (platelet-derived) Tj ETQq0 0 0 rg 2003, 376, 505-510.	gBT /Over 1.7	ock 10 Tf 50 43
53	C-KIT Signaling Depends on Microphthalmia-Associated Transcription Factor for Effects on Cell Proliferation. PLoS ONE, 2011, 6, e24064.	1.1	42
54	Involvement of Phosphatidylinositol 3'-Kinase in Stem-Cell-Factor-Induced Phospholipase D Activation and Arachidonic Acid Release. FEBS Journal, 1997, 248, 149-155.	0.2	40

#	Article	IF	CITATIONS
55	Src-Like Adaptor Protein (SLAP) Binds to the Receptor Tyrosine Kinase Flt3 and Modulates Receptor Stability and Downstream Signaling. PLoS ONE, 2012, 7, e53509.	1.1	40
56	Co expression of SCF and KIT in gastrointestinal stromal tumours (GISTs) suggests an autocrine/paracrine mechanism. British Journal of Cancer, 2006, 94, 1180-1185.	2.9	39
57	Adaptor protein Lnk binds to and inhibits normal and leukemic FLT3. Blood, 2012, 120, 3310-3317.	0.6	38
58	De novo activating mutations drive clonal evolution and enhance clonal fitness in KMT2A-rearranged leukemia. Nature Communications, 2018, 9, 1770.	5.8	38
59	Overactivation of Phospholipase $C \cdot \hat{I}^3 1$ Renders Platelet-derived Growth Factor \hat{I}^2 -Receptor-expressing Cells Independent of the Phosphatidylinositol 3-Kinase Pathway for Chemotaxis. Journal of Biological Chemistry, 1999, 274, 22089-22094.	1.6	37
60	SHP-2 is involved in heterodimer specific loss of phosphorylation of Tyr771 in the PDGF \hat{l}^2 -receptor. Oncogene, 2002, 21, 1870-1875.	2.6	37
61	Identification of Tyr900 in the kinase domain of c-Kit as a Src-dependent phosphorylation site mediating interaction with c-Crk. Experimental Cell Research, 2003, 288, 110-118.	1.2	37
62	Characterization of the chronic myelomonocytic leukemia associated TEL-PDGFÎ ² R fusion protein. Oncogene, 1999, 18, 7055-7062.	2.6	36
63	Identification of phosphorylation sites within the SH3 domains of Tec family tyrosine kinases. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2003, 1645, 123-132.	1.1	36
64	Ezrin is a substrate for Lck in T cells. FEBS Letters, 2003, 535, 82-86.	1.3	36
65	Grb2 mediates negative regulation of stem cell factor receptor/c-Kit signaling by recruitment of Cbl. Experimental Cell Research, 2007, 313, 3935-3942.	1.2	36
66	A role of Gab2 association in Flt3 ITD mediated Stat5 phosphorylation and cell survival. British Journal of Haematology, 2009, 146, 193-202.	1.2	36
67	Gab1 Contributes to Cytoskeletal Reorganization and Chemotaxis in Response to Platelet-derived Growth Factor. Journal of Biological Chemistry, 2004, 279, 17897-17904.	1.6	35
68	Oncogenic Flt3 receptors display different specificity and kinetics of autophosphorylation. Experimental Hematology, 2009, 37, 979-989.	0.2	35
69	Keratin 19 expression correlates with poor prognosis in breast cancer. Molecular Biology Reports, 2014, 41, 7729-7735.	1.0	35
70	Dysfunctionality of a tobacco mosaic virus movement protein mutant mimicking threonine 104 phosphorylation. Journal of General Virology, 2003, 84, 727-732.	1.3	34
71	Differential tyrosine phosphorylation of fibroblast growth factor (FGF) receptor-1 and receptor proximal signal transduction in response to FGF-2 and heparin. Experimental Cell Research, 2003, 287, 190-198.	1.2	33
72	The role of HOXB2 and HOXB3 in acute myeloid leukemia. Biochemical and Biophysical Research Communications, 2015, 467, 742-747.	1.0	33

#	Article	lF	CITATIONS
73	FYN expression potentiates FLT3-ITD induced STAT5 signaling in acute myeloid leukemia. Oncotarget, 2016, 7, 9964-9974.	0.8	31
74	Src-Like Adaptor Protein (SLAP) differentially regulates normal and oncogenic c-Kit signaling. Journal of Cell Science, 2014, 127, 653-62.	1.2	30
75	The tyrosine kinase CSK associates with FLT3 and c-Kit receptors and regulates downstream signaling. Cellular Signalling, 2013, 25, 1852-1860.	1.7	30
76	SOCS6 is a selective suppressor of receptor tyrosine kinase signaling. Tumor Biology, 2014, 35, 10581-10589.	0.8	30
77	Brain-Expressed X-linked (BEX) proteins in human cancers. Biochimica Et Biophysica Acta: Reviews on Cancer, 2015, 1856, 226-233.	3.3	30
78	Protein kinase C (PKC) as a drug target in chronic lymphocytic leukemia. Medical Oncology, 2013, 30, 757.	1.2	29
79	Phosphorylation of the Activation Loop Tyrosine 823 in c-Kit Is Crucial for Cell Survival and Proliferation. Journal of Biological Chemistry, 2013, 288, 22460-22468.	1.6	29
80	The c-Kit/D816V mutation eliminates the differences in signal transduction and biological responses between two isoforms of c-Kit. Cellular Signalling, 2009, 21, 413-418.	1.7	28
81	Inhibition of MEK5 by BIX02188 induces apoptosis in cells expressing the oncogenic mutant FLT3-ITD. Biochemical and Biophysical Research Communications, 2011, 412, 307-312.	1.0	26
82	Impact of gene dosage, loss of wild-type allele, and FLT3 ligand on Flt3-ITD–induced myeloproliferation. Blood, 2011, 118, 3613-3621.	0.6	26
83	Receptor association and tyrosine phosphorylation of S6 kinases. FEBS Journal, 2006, 273, 2023-2036.	2.2	25
84	The Characterization of Epithelial and Stromal Subsets of Candidate Stem/Progenitor Cells in the Human Adult Prostate. European Urology, 2008, 53, 524-532.	0.9	25
85	BEX1 acts as a tumor suppressor in acute myeloid leukemia. Oncotarget, 2015, 6, 21395-21405.	0.8	25
86	PDGF-Induced Phosphorylation of Tyr28 in the N-Terminus of Fyn Affects Fyn Activation. Biochemical and Biophysical Research Communications, 1997, 241, 355-362.	1.0	23
87	Deregulation of protein phosphatase expression in acute myeloid leukemia. Medical Oncology, 2013, 30, 517.	1.2	23
88	Identification of a Ser/Thr cluster in the C-terminal domain of the human prostaglandin receptor EP4 that is essential for agonist-induced beta-arrestin1 recruitment but differs from the apparent principal phosphorylation site. Biochemical Journal, 2004, 379, 573-585.	1.7	22
89	Interaction and functional cooperation between the serine/threonine kinase bone morphogenetic protein type II receptor with the tyrosine kinase stem cell factor receptor. Journal of Cellular Physiology, 2006, 206, 457-467.	2.0	22
90	Role of SRC-like adaptor protein (SLAP) in immune and malignant cell signaling. Cellular and Molecular Life Sciences, 2015, 72, 2535-2544.	2.4	22

#	Article	IF	Citations
91	FLT3 mutations in patients with childhood acute lymphoblastic leukemia (ALL). Medical Oncology, 2013, 30, 462.	1.2	21
92	The role of SRC family kinases in FLT3 signaling. International Journal of Biochemistry and Cell Biology, 2019, 107, 32-37.	1.2	20
93	The Src family kinase LCK cooperates with oncogenic FLT3/ITD in cellular transformation. Scientific Reports, 2017, 7, 13734.	1.6	19
94	Src-like adaptor protein 2 (SLAP2) binds to and inhibits FLT3 signaling. Oncotarget, 2016, 7, 57770-57782.	0.8	18
95	HIF-2α Expression Is Suppressed in SCLC Cells, Which Survive in Moderate and Severe Hypoxia When HIF-1α Is Repressed. American Journal of Pathology, 2012, 180, 494-504.	1.9	17
96	Bruton's tyrosine kinase potentiates ALK signaling and serves as a potential therapeutic target of neuroblastoma. Oncogene, 2018, 37, 6180-6194.	2.6	17
97	Functional co-operation between the subunits in heterodimeric platelet-derived growth factor receptor complexes. Biochemical Journal, 1999, 341, 523-528.	1.7	16
98	Activation of Ras, Raf-1 and protein kinase C in differentiating human neuroblastoma cells after treatment with phorbolester and NGF. Cellular Signalling, 2001, 13, 95-104.	1.7	16
99	Haematopoietic progenitor cells utilise conventional PKC to suppress PKB/Akt activity in response to c-Kit stimulation. British Journal of Haematology, 2007, 136, 260-268.	1.2	16
100	ABL2 suppresses FLT3-ITD-induced cell proliferation through negative regulation of AKT signaling. Oncotarget, 2017, 8, 12194-12202.	0.8	16
101	$HIF2\hat{l}\pm$ contributes to antiestrogen resistance via positive bilateral crosstalk with EGFR in breast cancer cells. Oncotarget, 2016, 7, 11238-11250.	0.8	16
102	The presence or absence of IL-3 during long-term culture of Flt3-ITD and c-Kit-D816V expressing Ba/F3 cells influences signaling outcome. Experimental Hematology, 2013, 41, 585-587.	0.2	15
103	KITD816V Induces SRC-Mediated Tyrosine Phosphorylation of MITF and Altered Transcription Program in Melanoma. Molecular Cancer Research, 2017, 15, 1265-1274.	1.5	15
104	Internal tandem duplication mutations in the tyrosine kinase domain of FLT3 display a higher oncogenic potential than the activation loop D835Y mutation. Annals of Hematology, 2018, 97, 773-780.	0.8	15
105	Protein kinase C expression is deregulated in chronic lymphocytic leukemia. Leukemia and Lymphoma, 2013, 54, 2288-2290.	0.6	14
106	EPO-independent functional EPO receptor in breast cancer enhances estrogen receptor activity and promotes cell proliferation. Biochemical and Biophysical Research Communications, 2014, 445, 163-169.	1.0	14
107	Tyrosine 842 in the activation loop is required for full transformation by the oncogenic mutant FLT3-ITD. Cellular and Molecular Life Sciences, 2017, 74, 2679-2688.	2.4	12
108	The Phosphatases STS1 and STS2 Regulate Hematopoietic Stem and Progenitor Cell Fitness. Stem Cell Reports, 2015, 5, 633-646.	2.3	11

#	Article	IF	Citations
109	Metallopeptidase inhibitor 1 (TIMPâ€1) promotes receptor tyrosine kinase câ€Kit signaling in colorectal cancer. Molecular Oncology, 2019, 13, 2646-2662.	2.1	11
110	Expression of GADS enhances FLT3-induced mitogenic signaling. Oncotarget, 2016, 7, 14112-14124.	0.8	11
111	Enhanced SOX10 and KIT expression in cutaneous melanoma. Medical Oncology, 2013, 30, 648.	1.2	9
112	Phosphorylation of a 72-kDa protein in PDGF-stimulated cells which forms complex with c-Crk, c-Fyn and Eps15. FEBS Letters, 1997, 409, 195-200.	1.3	8
113	Differential activity of c-KIT splice forms is controlled by extracellular peptide insert length. Cellular Signalling, 2013, 25, 2231-2238.	1.7	8
114	O-5: Identification of the site in the cGMP-inhibited phosphodiesterase phosphorylated in adipocytes in response to insulin and isoproterenol. Experimental and Clinical Endocrinology and Diabetes, 1996, 104, 10-11.	0.6	7
115	Association of Coatomer Proteins with the \hat{l}^2 -Receptor for Platelet-Derived Growth Factor. Biochemical and Biophysical Research Communications, 1997, 235, 455-460.	1.0	7
116	Ser-474 is the major target of insulin-mediated phosphorylation of protein kinase B \hat{l}^2 in primary rat adipocytes. Cellular Signalling, 2002, 14, 175-182.	1.7	7
117	Irreversible panâ€ERBB inhibitor canertinib elicits antiâ€leukaemic effects and induces the regression of FLT3â€ITD transformed cells in mice. British Journal of Haematology, 2011, 155, 198-208.	1.2	7
118	PI3 kinase is indispensable for oncogenic transformation by the V560D mutant of c-Kit in a kinase-independent manner. Cellular and Molecular Life Sciences, 2015, 72, 4399-4407.	2.4	7
119	TNF-α Suppresses the PDGF β-Receptor Kinase. Experimental Cell Research, 2000, 258, 65-71.	1.2	6
120	Characterization of the platelet-derived growth factor \hat{l}^2 -receptor kinase activity by use of synthetic peptides. Biochemical and Biophysical Research Communications, 1990, 167, 1333-1340.	1.0	5
121	Functional co-operation between the subunits in heterodimeric platelet-derived growth factor receptor complexes. Biochemical Journal, 1999, 341, 523.	1.7	5
122	3,4-Diarylmaleimidesâ€"a novel class of kinase inhibitorsâ€"effectively induce apoptosis in FLT3-ITD-dependent cells. Annals of Hematology, 2012, 91, 331-344.	0.8	5
123	The ALK inhibitor AZD3463 effectively inhibits growth of sorafenib-resistant acute myeloid leukemia. Blood Cancer Journal, 2019, 9, 5.	2.8	5
124	Stimulation of tyrosine phosphorylation by platelet-derived growth factor. Biochemical Society Transactions, 1984, 12, 759-762.	1.6	4
125	[30] Purification of platelet-derived growth factor \hat{l}^2 receptor from porcine uterus. Methods in Enzymology, 1991, 200, 371-378.	0.4	4
126	Signaling by the Platelet-Derived Growth Factor Receptor Family. , 2010, , 427-434.		4

#	Article	IF	Citations
127	SRC-like adaptor protein 2 (SLAP2) is a negative regulator of KIT-D816V-mediated oncogenic transformation. Scientific Reports, 2018, 8, 6405.	1.6	3
128	Characterization of the fibroblast receptor for platelet-derived growth factor. Cell Biology International Reports, 1983, 7, 543-544.	0.7	2
129	The basic helix-loop-helix (bHLH) proteins in breast cancer progression. Medical Oncology, 2013, 30, 666.	1.2	2
130	The PDGFR Receptor Family. , 2015, , 373-538.		2
131	XK-related protein 5 (XKR5) is a novel negative regulator of KIT/D816V-mediated transformation. Oncogenesis, 2018, 7, 48.	2.1	2
132	Src-Like Adaptor Protein (SLAP) differentially regulates normal and oncogenic c-Kit signaling. Journal of Cell Science, 2014, 127, 2376-2376.	1.2	1
133	Internal Tandem Duplication (ITD) in the Tyrosine Kinase Domain of FLT3 Displays Higher Oncogenic Potential in Acute Myeloid Leukemia. Blood, 2016, 128, 5118-5118.	0.6	1
134	Negative Regulation of c-Kit Is Dependent on Direct Binding of Cbl to Tyrosines 568 and 936 Blood, 2005, 106, 2288-2288.	0.6	0
135	Identification of Two Src Recruitment Sites in the Juxtamembrane Region of Flt3 with Opposing Effects on Flt3-Ligand-Induced Signaling Blood, 2005, 106, 2289-2289.	0.6	0
136	Splice Form Specific Signaling of the Hematopoietic Growth Factor Receptor c-Kit Blood, 2005, 106, 4284-4284.	0.6	0
137	Identification of Tyrosine Residues of Importance for Survival Signaling through the Scaffolding Protein Gab2 in Both Wild-Type FLT3 and the FLT3-ITD Blood, 2007, 110, 1622-1622.	0.6	0
138	Platelet-Derived Growth Factor B Type Receptor., 1990,, 303-314.		0
139	Aberrant Activation of the PI3K/mTOR Pathway Promotes Resistance to Sorafenib in AML. Blood, 2015, 126, 2472-2472.	0.6	0
140	FMS-Like Tyrosine Kinase-3., 2016, , 1-4.		0
141	BEX3., 2016, , 1-4.		0
142	GRB10., 2016,, 1-4.		0
143	Src-Like Adapter Protein (SLAP). , 2016, , 1-4.		0
144	Src-Like Adapter Protein 2 (SLAP2). , 2016, , 1-4.		0

#	Article	IF	CITATIONS
145	Tyrosine 842 Residue in the Activation Loop of FLT3-ITD Is Indespensible for Oncogenic Transformation. Blood, 2016, 128, 1561-1561.	0.6	0
146	Loss of Src-like Adaptor Protein 2 Expression Increases the Transforming Potential of Oncogenic FLT3-ITD. Blood, 2016, 128, 5106-5106.	0.6	0
147	BEX3., 2018, , 549-552.		O
148	GRB10., 2018,, 2250-2253.		0
149	FMS-Like Tyrosine Kinase-3. , 2018, , 1787-1790.		O
150	Src-Like Adapter Protein (SLAP)., 2018,, 5145-5149.		0
151	Kit. , 2018, , 2772-2776.		О
152	Src-Like Adapter Protein 2 (SLAP2)., 2018,, 5149-5152.		0