
Atefe Rezaei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7791462/publications.pdf Version: 2024-02-01

ATEEE DEZAEL

#	Article	IF	CITATIONS
1	Addition of milk to coffee beverages; the effect on functional, nutritional, and sensorial properties. Critical Reviews in Food Science and Nutrition, 2022, 62, 6132-6152.	10.3	18
2	Co-encapsulation of probiotics with prebiotics and their application in functional/synbiotic dairy products. Critical Reviews in Food Science and Nutrition, 2022, 62, 2470-2494.	10.3	52
3	Colloidal carriers of almond gum/gelatin coacervates for rosemary essential oil: Characterization and in-vitro cytotoxicity. Food Chemistry, 2022, 377, 131998.	8.2	22
4	Targeting foodborne pathogens via surface-functionalized nano-antimicrobials. Advances in Colloid and Interface Science, 2022, 302, 102622.	14.7	16
5	Preparation of soluble complex carriers from Aloe vera mucilage/gelatin for cinnamon essential oil: Characterization and antibacterial activity. Journal of Food Engineering, 2022, 334, 111160.	5.2	6
6	Loading ferulic acid into β-cyclodextrin nanosponges; antibacterial activity, controlled release and application in pomegranate juice as a copigment agent. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 649, 129454.	4.7	7
7	Release of bioactive compounds from delivery systems by stimuli-responsive approaches; triggering factors, mechanisms, and applications. Advances in Colloid and Interface Science, 2022, 307, 102728.	14.7	11
8	Possible health risks associated with nanostructures in food. , 2021, , 31-118.		2
9	Design and formulation of nano/micro-encapsulated natural bioactive compounds for food applications. , 2021, , 1-41.		11
10	Opportunities and challenges for the nanodelivery of green tea catechins in functional foods. Food Research International, 2021, 142, 110186.	6.2	63
11	Characterization and Antibacterial Activity of Encapsulated Rosemary Essential Oil within Amylose Nanostructures as a Natural Antimicrobial in Food Applications. Starch/Staerke, 2021, 73, 2100021.	2.1	19
12	Limonene loaded cyclodextrin nanosponge: Preparation, characterization, antibacterial activity and controlled release. Food Bioscience, 2021, 42, 101193.	4.4	21
13	Incorporation of thyme essential oil into the β-cyclodextrin nanosponges: Preparation, characterization and antibacterial activity. Journal of Molecular Structure, 2021, 1241, 130610.	3.6	16
14	<p>Improving the solubility and in vitro cytotoxicity (anticancer activity) of ferulic acid by loading it into cyclodextrin nanosponges</p> . International Journal of Nanomedicine, 2019, Volume 14, 4589-4599.	6.7	68
15	Evaluation of Release Kinetics and Mechanisms of Curcumin and Curcumin-β-Cyclodextrin Inclusion Complex Incorporated in Electrospun Almond Gum/PVA Nanofibers in Simulated Saliva and Simulated Gastrointestinal Conditions. BioNanoScience, 2019, 9, 438-445.	3.5	80
16	Nanoencapsulation of hydrophobic and low-soluble food bioactive compounds within different nanocarriers. Food Hydrocolloids, 2019, 88, 146-162.	10.7	347
17	Encapsulation of curcumin using electrospun almond gum nanofibers: fabrication and characterization. International Journal of Food Properties, 2018, 21, 1608-1618.	3.0	37
18	A study on the release kinetics and mechanisms of vanillin incorporated in almond gum/polyvinyl alcohol composite nanofibers in different aqueous food simulants and simulated saliva. Flavour and Fragrance Journal, 2016, 31, 442-447.	2.6	34

2

Atefe Rezaei

#	Article	IF	CITATIONS
19	Fabrication of electrospun almond gum/PVA nanofibers as a thermostable delivery system for vanillin. International Journal of Biological Macromolecules, 2016, 91, 536-543.	7.5	72
20	Fractionation and some physicochemical properties of almond gum (Amygdalus communis L.) exudates. Food Hydrocolloids, 2016, 60, 461-469.	10.7	102
21	Application of Cellulosic Nanofibers in Food Science Using Electrospinning and Its Potential Risk. Comprehensive Reviews in Food Science and Food Safety, 2015, 14, 269-284.	11.7	186