David L Sidebottom

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7791050/publications.pdf

Version: 2024-02-01

23 papers 1,133 citations

687363 13 h-index 713466 21 g-index

25 all docs

25 docs citations

25 times ranked

1031 citing authors

#	Article	IF	CITATIONS
1	Fundamental questions relating to ion conduction in disordered solids. Reports on Progress in Physics, 2009, 72, 046501.	20.1	360
2	Universal Approach for Scaling the ac Conductivity in Ionic Glasses. Physical Review Letters, 1999, 82, 3653-3656.	7.8	284
3	<i>Colloquium (i): Understanding ion motion in disordered solids from impedance spectroscopy scaling. Reviews of Modern Physics, 2009, 81, 999-1014.</i>	45. 6	184
4	Light scattering study of the glass transition in salol. Physical Review B, 1989, 40, 461-466.	3.2	36
5	Dynamic light scattering in network-forming sodium ultraphosphate liquids near the glass transition. Physical Review B, 2009, 80, .	3.2	33
6	Universal patterns of equilibrium cluster growth in aqueous sugars observed by dynamic light scattering. Physical Review E, 2010, 82, .	2.1	33
7	Role of intermediate-range order in predicting the fragility of network-forming liquids near the rigidity transition. Physical Review B, 2013, 87, .	3.2	29
8	Fragility of network-forming glasses: A universal dependence on the topological connectivity. Physical Review E, 2015, 92, 062804.	2.1	29
9	Ultraslow relaxation of hydrogen-bonded dynamic clusters in glass-forming aqueous glucose solutions: A light scattering study. Physical Review E, 2007, 76, 011505.	2.1	24
10	Connecting structure and dynamics in glass forming materials by photon correlation spectroscopy. Physical Review B, 2007, 75, .	3.2	24
11	Connecting Glass-Forming Fragility to Network Topology. Frontiers in Materials, 2019, 6, .	2.4	24
12	Constriction effect in the nearly constant loss of alkali metaphosphate glasses. Physical Review B, 2005, 71, .	3.2	13
13	Glassâ€Forming Dynamics of Aluminophosphate Melts Studied by Photon Correlation Spectroscopy. Journal of the American Ceramic Society, 2013, 96, 2147-2154.	3.8	13
14	Viscoelastic relaxation in molten phosphorus pentoxide using photon correlation spectroscopy. Physical Review B, 2008, 77, .	3.2	12
15	Assessing the network connectivity of modifier ions in metaphosphate glass melts: A dynamic light scattering study of Na-Zn mixtures. Journal of Chemical Physics, 2016, 145, 164503.	3.0	12
16	Dynamic light scattering in mixed alkali metaphosphate glass forming liquids. Journal of Chemical Physics, 2006, 125, 024502.	3.0	8
17	Comment on "A model for phosphate glass topology considering the modifying ion sub-network―[J. Chem. Phys. 140 , 154501 (2014)]. Journal of Chemical Physics, 2015, 142, 107103.	3.0	6
18	Coarseâ€grained model of the glass transition in networkâ€forming oxides. Journal of the American Ceramic Society, 2021, 104, 2007-2016.	3.8	4

#	Article	IF	CITATIONS
19	Slow sound: An undergraduate lab experience for critical thinking. American Journal of Physics, 2020, 88, 521-525.	0.7	2
20	Fluorescent Carbon Particles formed from Concentrated Glucose Solutions. MRS Advances, 2019, 4, 67-72.	0.9	1
21	Response to comment on "The fragility of alkali silicate glass melts: Part of a universal topological pattern― Journal of Non-Crystalline Solids, 2020, 529, 119805.	3.1	1
22	The speed of sound in monster sound tubes. Physics Education, 2021, 56, 043009.	0.5	0
23	SCALING PROPERTIES OF ION CONDUCTION AND WHAT THEY REVEAL ABOUT ION MOTION IN GLASSES. , 2007, , .		0