
Richard Robitaille

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/779096/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functional adaptation of glial cells at neuromuscular junctions in response to injury. Glia, 2022, 70, 1605-1629.	4.9	12
2	hnRNP A1B, a Splice Variant of HNRNPA1, Is Spatially and Temporally Regulated. Frontiers in Neuroscience, 2021, 15, 724307.	2.8	3
3	Improved Human Muscle Biopsy Method To Study Neuromuscular Junction Structure and Functions with Aging. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 2098-2102.	3.6	11
4	Properties of Glial Cell at the Neuromuscular Junction Are Incompatible with Synaptic Repair in the <i>SOD1^{G37R}</i> ALS Mouse Model. Journal of Neuroscience, 2020, 40, 7759-7777.	3.6	21
5	Sex-Specific Differences in Motor-Unit Remodeling in a Mouse Model of ALS. ENeuro, 2020, 7, ENEURO.0388-19.2020.	1.9	12
6	The Novel Small Molecule TRVA242 Stabilizes Neuromuscular Junction Defects in Multiple Animal Models of Amyotrophic Lateral Sclerosis. Neurotherapeutics, 2019, 16, 1149-1166.	4.4	26
7	Purinergic-Dependent Glial Regulation of Synaptic Plasticity of Competing Terminals and Synapse Elimination at the Neuromuscular Junction. Cell Reports, 2018, 25, 2070-2082.e6.	6.4	25
8	GABAergic modulation of olfactomotor transmission in lampreys. PLoS Biology, 2018, 16, e2005512.	5.6	16
9	Astrocytes detect and upregulate transmission at inhibitory synapses of somatostatin interneurons onto pyramidal cells. Nature Communications, 2018, 9, 4254.	12.8	73
10	Dynamic neuromuscular remodeling precedes motor-unit loss in a mouse model of ALS. ELife, 2018, 7, .	6.0	74
11	Opposite Synaptic Alterations at the Neuromuscular Junction in an ALS Mouse Model: When Motor Units Matter. Journal of Neuroscience, 2017, 37, 8901-8918.	3.6	53
12	New perspectives on amyotrophic lateral sclerosis: the role of glial cells at the neuromuscular junction. Journal of Physiology, 2017, 595, 647-661.	2.9	59
13	A Novel Egr-1-Agrin Pathway and Potential Implications for Regulation of Synaptic Physiology and Homeostasis at the Neuromuscular Junction. Frontiers in Aging Neuroscience, 2017, 9, 258.	3.4	10
14	Neuroleptics as therapeutic compounds stabilizing neuromuscular transmission in amyotrophic lateral sclerosis. JCI Insight, 2017, 2, .	5.0	83
15	Early and Persistent Abnormal Decoding by Glial Cells at the Neuromuscular Junction in an ALS Model. Journal of Neuroscience, 2015, 35, 688-706.	3.6	77
16	An astrocyte-dependent mechanism for neuronal rhythmogenesis. Nature Neuroscience, 2015, 18, 844-854.	14.8	130
17	Perisynaptic Schwann Cells at the Neuromuscular Synapse: Adaptable, Multitasking Glial Cells. Cold Spring Harbor Perspectives in Biology, 2015, 7, a020503.	5.5	75
18	<i>Vapb</i> /Amyotrophic lateral sclerosis 8 knock-in mice display slowly progressive motor behavior defects accompanying ER stress and autophagic response. Human Molecular Genetics, 2015, 24, 6515-6529.	2.9	43

RICHARD ROBITAILLE

#	Article	IF	CITATIONS
19	Gliotransmitters Travel in Time and Space. Neuron, 2014, 81, 728-739.	8.1	1,010
20	Neuromuscular synaptogenesis: coordinating partners with multiple functions. Nature Reviews Neuroscience, 2014, 15, 703-718.	10.2	144
21	Neuromuscular synaptogenesis: coordinating partners with multiple functions. Nature Reviews Neuroscience, 2014, 15, 703-18.	10.2	85
22	Glial Cells Decipher Synaptic Competition at the Mammalian Neuromuscular Junction. Journal of Neuroscience, 2013, 33, 1297-1313.	3.6	56
23	Astrocytes Are Endogenous Regulators of Basal Transmission at Central Synapses. Cell, 2011, 146, 785-798.	28.9	536
24	<i>In vivo</i> long-term synaptic plasticity of glial cells. Journal of Physiology, 2010, 588, 1039-1056.	2.9	26
25	Perisynaptic Glia Discriminate Patterns of Motor Nerve Activity and Influence Plasticity at the Neuromuscular Junction. Journal of Neuroscience, 2010, 30, 11870-11882.	3.6	86
26	Nitric oxide dependence of glutamateâ€mediated modulation at a vertebrate neuromuscular junction. European Journal of Neuroscience, 2008, 28, 577-587.	2.6	27
27	Neurotrophins modulate neuron-glia interactions at a vertebrate synapse. European Journal of Neuroscience, 2007, 25, 1287-1296.	2.6	41
28	Purinergic modulation of synaptic signalling at the neuromuscular junction. Pflugers Archiv European Journal of Physiology, 2006, 452, 608-614.	2.8	34
29	Glial cells in synaptic plasticity. Journal of Physiology (Paris), 2006, 99, 75-83.	2.1	54
30	Calcium signaling in Schwann cells at synaptic and extra-synaptic sites: Active glial modulation of neuronal activity. Glia, 2006, 54, 691-699.	4.9	40
31	GABAergic Network Activation of Glial Cells Underlies Hippocampal Heterosynaptic Depression. Journal of Neuroscience, 2006, 26, 5370-5382.	3.6	348
32	Neuron-glia interactions at the neuromuscular synapse. Novartis Foundation Symposium, 2006, 276, 222-9; discussion 229-37, 275-81.	1.1	5
33	Long-termin vivomodulation of synaptic efficacy at the neuromuscular junction ofRana pipiensfrogs. Journal of Physiology, 2005, 569, 163-178.	2.9	18
34	Glial modulation of synaptic transmission at the neuromuscular junction. Glia, 2004, 47, 284-289.	4.9	45
35	Modulation of neurotransmission by reciprocal synapse-glial interactions at the neuromuscular junction. Journal of Neurocytology, 2003, 32, 1003-1015.	1.5	20
36	Glutamatergic modulation of synaptic plasticity at a PNS vertebrate cholinergic synapse. European Journal of Neuroscience, 2003, 18, 3241-3250.	2.6	53

#	Article	IF	CITATIONS
37	Perisynaptic Schwann Cells at the Neuromuscular Junction: Nerve- and Activity-Dependent Contributions to Synaptic Efficacy, Plasticity, and Reinnervation. Neuroscientist, 2003, 9, 144-157.	3.5	62
38	Glial Cells and Neurotransmission. Neuron, 2003, 40, 389-400.	8.1	217
39	Synapse–Glia Interactions at the Mammalian Neuromuscular Junction. Journal of Neuroscience, 2001, 21, 3819-3829.	3.6	128
40	Differential Regulation of Transmitter Release by Presynaptic and Glial Ca ²⁺ Internal Stores at the Neuromuscular Synapse. Journal of Neuroscience, 2001, 21, 1911-1922.	3.6	92
41	Differential Frequency-Dependent Regulation of Transmitter Release by Endogenous Nitric Oxide at the Amphibian Neuromuscular Synapse. Journal of Neuroscience, 2001, 21, 1087-1095.	3.6	58
42	Differential mechanisms of Ca2+ responses in glial cells evoked by exogenous and endogenous glutamate in rat hippocampus. Hippocampus, 2001, 11, 132-145.	1.9	52
43	Glial cells as active partners in synaptic functions. Progress in Brain Research, 2001, 132, 227-240.	1.4	43
44	Muscarinic Control of Cytoskeleton in Perisynaptic Glia. Journal of Neuroscience, 1999, 19, 3836-3846.	3.6	57
45	Effects of adenosine on Ca ²⁺ entry in the nerve terminal of the frog neuromuscular junction. Canadian Journal of Physiology and Pharmacology, 1999, 77, 707-714.	1.4	27
46	Effects of adenosine on Ca ²⁺ entry in the nerve terminal of the frog neuromuscular junction. Canadian Journal of Physiology and Pharmacology, 1999, 77, 707-714.	1.4	18
47	Localization and characterization of nitric oxide synthase at the frog neuromuscular junction. Journal of Neurocytology, 1998, 27, 829-840.	1.5	41
48	Endogenous peptidergic modulation of perisynaptic Schwann cells at the frog neuromuscular junction. Journal of Physiology, 1998, 512, 197-209.	2.9	31
49	Modulation of Synaptic Efficacy and Synaptic Depression by Glial Cells at the Frog Neuromuscular Junction. Neuron, 1998, 21, 847-855.	8.1	216
50	Role of Sensory-Evoked NMDA Plateau Potentials in the Initiation of Locomotion. Science, 1997, 278, 1122-1125.	12.6	120
51	Muscarinic Ca2+responses resistant to muscarinic antagonists at perisynaptic schwann cells of the frog neuromuscular junction. Journal of Physiology, 1997, 504, 337-347.	2.9	56
52	Synaptic regulation of glial protein expression in vivo. Neuron, 1994, 12, 443-455.	8.1	102
53	Transmitter release increases intracellular calcium in perisynaptic schwann cells in situ. Neuron, 1992, 8, 1069-1077.	8.1	210
54	Strategic location of calcium channels at transmitter release sites of frog neuromuscular synapses. Neuron, 1990, 5, 773-779.	8.1	387