List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7790664/publications.pdf Version: 2024-02-01

Νιζοίλ Ρινιλ

#	Article	IF	CITATIONS
1	Nanostructured Materials for Roomâ€Temperature Gas Sensors. Advanced Materials, 2016, 28, 795-831.	21.0	1,192
2	Twoâ€Dimensional Nanostructured Materials for Gas Sensing. Advanced Functional Materials, 2017, 27, 1702168.	14.9	588
3	Atomic Layer Deposition of Nanostructured Materials for Energy and Environmental Applications. Advanced Materials, 2012, 24, 1017-1032.	21.0	516
4	Galvanic Replacement Reactions in Metal Oxide Nanocrystals. Science, 2013, 340, 964-968.	12.6	472
5	Surfactantâ€Free Nonaqueous Synthesis of Metal Oxide Nanostructures. Angewandte Chemie - International Edition, 2008, 47, 5292-5304.	13.8	437
6	Magnetite Nanocrystals: Nonaqueous Synthesis, Characterization, and Solubilityâ€. Chemistry of Materials, 2005, 17, 3044-3049.	6.7	341
7	Amorphous layer around aragonite platelets in nacre. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12653-12655.	7.1	339
8	Electrospun Nanomaterials for Supercapacitor Electrodes: Designed Architectures and Electrochemical Performance. Advanced Energy Materials, 2017, 7, 1601301.	19.5	334
9	Chlorine intercalation in graphitic carbon nitride for efficient photocatalysis. Applied Catalysis B: Environmental, 2017, 203, 465-474.	20.2	328
10	Periodically ordered nanoscale islands and mesoporous films composed of nanocrystalline multimetallic oxides. Nature Materials, 2004, 3, 787-792.	27.5	327
11	Nonaqueous Synthesis of Nanocrystalline Semiconducting Metal Oxides for Gas Sensing. Angewandte Chemie - International Edition, 2004, 43, 4345-4349.	13.8	313
12	Highly Crystalline Cubic Mesoporous TiO2with 10-nm Pore Diameter Made with a New Block Copolymer Template. Chemistry of Materials, 2004, 16, 2948-2952.	6.7	309
13	Ni Strongly Coupled with Mo ₂ C Encapsulated in Nitrogenâ€Đoped Carbon Nanofibers as Robust Bifunctional Catalyst for Overall Water Splitting. Advanced Energy Materials, 2019, 9, 1803185.	19.5	306
14	Turkevich in New Robes: Key Questions Answered for the Most Common Gold Nanoparticle Synthesis. ACS Nano, 2015, 9, 7052-7071.	14.6	300
15	A General Soft-Chemistry Route to Perovskites and Related Materials: Synthesis of BaTiO3, BaZrO3, and LiNbO3 Nanoparticles. Angewandte Chemie - International Edition, 2004, 43, 2270-2273.	13.8	270
16	Nonaqueous and Halide-Free Route to Crystalline BaTiO3, SrTiO3, and (Ba,Sr)TiO3Nanoparticles via a Mechanism Involving Câ^'C Bond Formation. Journal of the American Chemical Society, 2004, 126, 9120-9126.	13.7	265
17	Roomâ€Temperature Hydrogen Sensing with Heteronanostructures Based on Reduced Graphene Oxide and Tin Oxide. Angewandte Chemie - International Edition, 2012, 51, 11053-11057.	13.8	259
18	Ligand-Directed Assembly of Preformed Titania Nanocrystals into Highly Anisotropic Nanostructures. Advanced Materials, 2004, 16, 436-439.	21.0	255

#	Article	IF	CITATIONS
19	Superstructures of Calcium Carbonate Crystals by Oriented Attachment. Crystal Growth and Design, 2005, 5, 1317-1319.	3.0	241
20	Single Crystal Manganese Oxide Multipods by Oriented Attachment. Journal of the American Chemical Society, 2005, 127, 15034-15035.	13.7	227
21	Growth and Assembly of Crystalline Tungsten Oxide Nanostructures Assisted by Bioligation. Journal of the American Chemical Society, 2005, 127, 15595-15601.	13.7	213
22	Metal Oxide Nanoparticles in Organic Solvents. Engineering Materials and Processes, 2009, , .	0.4	212
23	A General Nonaqueous Route to Binary Metal Oxide Nanocrystals Involving a Câ~'C Bond Cleavage. Journal of the American Chemical Society, 2005, 127, 5608-5612.	13.7	209
24	Platinum single atoms on tin oxide ultrathin films for extremely sensitive gas detection. Materials Horizons, 2020, 7, 1519-1527.	12.2	200
25	MoS ₂ Van der Waals p–n Junctions Enabling Highly Selective Roomâ€∓emperature NO ₂ Sensor. Advanced Functional Materials, 2020, 30, 2000435.	14.9	190
26	Triangular CdS Nanocrystals: Structural and Optical Studies. Advanced Materials, 2001, 13, 261-264.	21.0	185
27	Local Structure of Nanoscopic Materials:  V2O5 Nanorods and Nanowires. Nano Letters, 2003, 3, 1131-1134.	9.1	170
28	Sensing behavior of SnO2/reduced graphene oxide nanocomposites toward NO2. Sensors and Actuators B: Chemical, 2013, 179, 61-68.	7.8	160
29	Non-Aqueous Synthesis of High-Purity Metal Oxide Nanopowders Using an Ether Elimination Process. Advanced Materials, 2004, 16, 2196-2200.	21.0	157
30	Polymer-Induced Alignment ofdl-Alanine Nanocrystals to Crystalline Mesostructures. Chemistry - A European Journal, 2005, 11, 2903-2913.	3.3	156
31	Efficient and tuneable photoluminescent boehmite hybrid nanoplates lacking metal activator centres for single-phase white LEDs. Nature Communications, 2014, 5, 5702.	12.8	146
32	Graphene/N-doped carbon sandwiched nanosheets with ultrahigh nitrogen doping for boosting lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 1423-1431.	10.3	146
33	Non-aqueous routes to crystalline metal oxide nanoparticles: Formation mechanisms and applications. Progress in Solid State Chemistry, 2005, 33, 59-70.	7.2	140
34	Nonaqueous synthesis of metal oxide nanoparticles:Review and indium oxide as case study for the dependence of particle morphology on precursors and solvents. Journal of Sol-Gel Science and Technology, 2006, 40, 259-266.	2.4	136
35	Ligand Functionality as a Versatile Tool to Control the Assembly Behavior of Preformed Titania Nanocrystals. Chemistry - A European Journal, 2005, 11, 3541-3551.	3.3	133
36	Recent Advances in Multimetal and Doped Transition-Metal Phosphides for the Hydrogen Evolution Reaction at Different pH values. ACS Applied Materials & Interfaces, 2021, 13, 22077-22097.	8.0	133

#	Article	IF	CITATIONS
37	Edge-enriched WS2 nanosheets on carbon nanofibers boosts NO2 detection at room temperature. Journal of Hazardous Materials, 2021, 411, 125120.	12.4	132
38	Microwave-assisted synthesis and characterization of flower shaped zinc oxide nanostructures. Materials Letters, 2009, 63, 242-245.	2.6	130
39	Retrosynthesis of Nacre via Amorphous Precursor Particles. Chemistry of Materials, 2005, 17, 6514-6516.	6.7	126
40	Microwave-assisted synthesis and characterization of tin oxide nanoparticles. Materials Letters, 2008, 62, 3437-3440.	2.6	124
41	CO gas sensing of ZnO nanostructures synthesized by an assisted microwave wet chemical route. Sensors and Actuators B: Chemical, 2009, 143, 198-204.	7.8	122
42	Synthesis and Characterization of Stable and Crystalline Ce1-xZrxO2 Nanoparticle Sols. Chemistry of Materials, 2004, 16, 2599-2604.	6.7	119
43	Divanadium Pentoxide Nanorods. Advanced Materials, 2003, 15, 329-331.	21.0	118
44	Synthesis of Yttria-Based Crystalline and Lamellar Nanostructures and their Formation Mechanism. Small, 2004, 1, 112-121.	10.0	118
45	Solvent Dependent Shape and Magnetic Properties of Doped ZnO Nanostructures. Advanced Functional Materials, 2007, 17, 3159-3169.	14.9	116
46	A facile hydrazine-assisted hydrothermal method for the deposition of monodisperse SnO ₂ nanoparticles onto graphene for lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 2520-2525.	6.7	116
47	Triangular CdS Nanocrystals:Â Synthesis, Characterization, and Stability. Langmuir, 2001, 17, 7982-7987.	3.5	108
48	Elemental Sulfur and Molybdenum Disulfide Composites for Li–S Batteries with Long Cycle Life and High-Rate Capability. ACS Applied Materials & Interfaces, 2016, 8, 13437-13448.	8.0	108
49	Vanadium Oxide Sensing Layer Grown on Carbon Nanotubes by a New Atomic Layer Deposition Process. Nano Letters, 2008, 8, 4201-4204.	9.1	103
50	Synthesis of Stable Aragonite Superstructures by a Biomimetic Crystallization Pathway. Angewandte Chemie - International Edition, 2005, 44, 6004-6009.	13.8	102
51	The "benzyl alcohol routeâ€: an elegant approach towards organic–inorganic hybrid nanomaterials. Journal of Materials Chemistry, 2007, 17, 2769-2774.	6.7	100
52	Solid acids with SO ₃ H groups and tunable surface properties: versatile catalysts for biomass conversion. Journal of Materials Chemistry A, 2014, 2, 11813-11824.	10.3	98
53	Structureâ€Properties Relationship in Iron Oxideâ€Reduced Graphene Oxide Nanostructures for Liâ€lon Batteries. Advanced Functional Materials, 2013, 23, 4293-4305.	14.9	96
54	Controlled Assembly of Preformed Ceria Nanocrystals into Highly Ordered 3D Nanostructures. Small, 2005, 1, 313-316.	10.0	95

#	Article	IF	CITATIONS
55	Carbon-nanostructures coated/decorated by atomic layer deposition: Growth and applications. Coordination Chemistry Reviews, 2013, 257, 3232-3253.	18.8	93
56	Large-Scale Synthesis of Ultrathin Manganese Oxide Nanoplates and Their Applications to T1 MRI Contrast Agents. Chemistry of Materials, 2011, 23, 3318-3324.	6.7	92
57	Sulfonated Graphene Oxide as Effective Catalyst for Conversion of 5â€(Hydroxymethyl)â€2â€furfural into Biofuels. ChemSusChem, 2014, 7, 804-812.	6.8	90
58	In2O3 and Pt-In2O3 nanopowders for low temperature oxygen sensors. Sensors and Actuators B: Chemical, 2007, 127, 455-462.	7.8	89
59	Production of biomass-derived furanic ethers and levulinate esters using heterogeneous acid catalysts. Green Chemistry, 2013, 15, 3367.	9.0	89
60	Citric Acid-Assisted Hydrothermal Synthesis of Luminescent TbPO4:Eu Nanocrystals: Controlled Morphology and Tunable Emission. Journal of Physical Chemistry C, 2008, 112, 18815-18820.	3.1	87
61	Surfactant-free nonaqueous synthesis of lithium titanium oxide (LTO) nanostructures for lithium ion battery applications. Journal of Materials Chemistry, 2011, 21, 806-810.	6.7	83
62	A novel nonaqueous route to V2O3 and Nb2O5 nanocrystals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 250, 211-213.	4.7	82
63	Effect of the chemical composition on the sensing properties of In2O3–SnO2 nanoparticles synthesized by a non-aqueous method. Sensors and Actuators B: Chemical, 2008, 130, 222-230.	7.8	81
64	Evaporation-Induced Self-Assembly (EISA) at Its Limit: Ultrathin, Crystalline Patterns by Templating of Micellar Monolayers. Advanced Materials, 2006, 18, 2260-2263.	21.0	78
65	Tin Dioxide Sensing Layer Grown on Tubular Nanostructures by a Nonâ€Aqueous Atomic Layer Deposition Process. Advanced Functional Materials, 2011, 21, 658-666.	14.9	77
66	The generation of mesostructured crystalline CeO2, ZrO2and CeO2–ZrO2films using evaporation-induced self-assembly. New Journal of Chemistry, 2005, 29, 237-242.	2.8	75
67	A one-pot microwave-assisted non-aqueous sol–gel approach to metal oxide/graphene nanocomposites for Li-ion batteries. RSC Advances, 2011, 1, 1687.	3.6	75
68	Lanthanide-Based Lamellar Nanohybrids:Â Synthesis, Structural Characterization, and Optical Properties. Chemistry of Materials, 2006, 18, 4493-4499.	6.7	74
69	Tuning the sensitivity of lanthanide-activated NIR nanothermometers in the biological windows. Nanoscale, 2018, 10, 2568-2576.	5.6	72
70	A highly sensitive oxygen sensor operating at room temperature based on platinum-doped In2O3 nanocrystals. Chemical Communications, 2005, , 6032.	4.1	71
71	Structural, optical and electrical characterization of antimony-substituted tin oxide nanoparticles. Journal of Physics and Chemistry of Solids, 2009, 70, 993-999.	4.0	67
72	Colloidal polymers from inorganic nanoparticle monomers. Progress in Polymer Science, 2015, 40, 85-120.	24.7	67

#	Article	IF	CITATIONS
73	Directing the Deposition of Ferromagnetic Cobalt onto Pt-Tipped CdSe@CdS Nanorods: Synthetic and Mechanistic Insights. ACS Nano, 2012, 6, 8632-8645.	14.6	65
74	A facile synthesis of Fe ₃ O ₄ /nitrogen-doped carbon hybrid nanofibers as a robust peroxidase-like catalyst for the sensitive colorimetric detection of ascorbic acid. Journal of Materials Chemistry B, 2017, 5, 5499-5505.	5.8	65
75	Mesoporous carbon–silica solid acid catalysts for producing useful bio-products within the sugar-platform of biorefineries. Green Chemistry, 2014, 16, 4292-4305.	9.0	62
76	Synthesis of Nickel Phosphide Electrocatalysts from Hybrid Metal Phosphonates. ACS Applied Materials & Interfaces, 2017, 9, 14013-14022.	8.0	59
77	Niobium pentoxide nanomaterials with distorted structures as efficient acid catalysts. Communications Chemistry, 2019, 2, .	4.5	59
78	Optical properties of silver nanocrystals self-organized in a two-dimensional superlattice: Substrate effect. Physical Review B, 2002, 66, .	3.2	57
79	Missing Piece of the Mechanism of the Turkevich Method: The Critical Role of Citrate Protonation. Chemistry of Materials, 2016, 28, 4072-4081.	6.7	57
80	Photoluminescence, cytotoxicity and in vitro imaging of hexagonal terbium phosphatenanoparticles doped with europium. Nanoscale, 2011, 3, 1263-1269.	5.6	56
81	Amperometric Sensing of H ₂ O ₂ using Pt–TiO ₂ /Reduced Graphene Oxide Nanocomposites. ChemElectroChem, 2014, 1, 617-624.	3.4	56
82	Sea-Sponge-like Structure of Nano-Fe ₃ O ₄ on Skeleton-C with Long Cycle Life under High Rate for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 19656-19663.	8.0	56
83	Transition Metal-Doped ZrO ₂ and HfO ₂ Nanocrystals. Journal of Physical Chemistry C, 2009, 113, 12048-12058.	3.1	55
84	Hybrid Organic–Inorganic Transitionâ€Metal Phosphonates as Precursors for Water Oxidation Electrocatalysts. Advanced Functional Materials, 2017, 27, 1703158.	14.9	55
85	Toward Optimized Radial Modulation of the Space-Charge Region in One-Dimensional SnO ₂ –NiO Core–Shell Nanowires for Hydrogen Sensing. ACS Applied Materials & Interfaces, 2020, 12, 4594-4606.	8.0	55
86	The controlled deposition of metal oxides onto carbon nanotubes by atomic layer deposition: examples and a case study on the application of V2O4 coated nanotubes in gas sensing. Physical Chemistry Chemical Physics, 2009, 11, 3615.	2.8	54
87	A review on the application of iron(III) fluorides as positive electrodes for secondary cells. Materials for Renewable and Sustainable Energy, 2014, 3, 1.	3.6	54
88	Nonaqueous synthesis, assembly and formation mechanisms of metal oxide nanocrystals. International Journal of Nanotechnology, 2007, 4, 263.	0.2	52
89	Surfactant-Mediated Generation of Iso-Oriented Dense and Mesoporous Crystalline Metal-Oxide Layers. Advanced Materials, 2006, 18, 1827-1831.	21.0	50
90	Nonâ€Aqueous Routes to Metal Oxide Thin Films by Atomic Layer Deposition. Angewandte Chemie - International Edition, 2008, 47, 3592-3595.	13.8	50

#	Article	IF	CITATIONS
91	Enhancing the Lithium Storage Performance of Graphene/SnO ₂ Nanorods by a Carbonâ€Riveting Strategy. ChemSusChem, 2018, 11, 1321-1327.	6.8	50
92	Manganese-Doped Zirconia Nanocrystals. European Journal of Inorganic Chemistry, 2008, 2008, 863-868.	2.0	49
93	Reliable palladium nanoparticle syntheses in aqueous solution: the importance of understanding precursor chemistry and growth mechanism. CrystEngComm, 2015, 17, 1865-1870.	2.6	49
94	Exploiting the Condensation Reactions of Acetophenone to Engineer Carbonâ€Encapsulated Nb ₂ O ₅ Nanocrystals for Highâ€Performance Li and Na Energy Storage Systems. Advanced Energy Materials, 2019, 9, 1902813.	19.5	49
95	One-Step Synthesis and Self-Assembly of Metal Oxide Nanoparticles into 3D Superlattices. ACS Nano, 2012, 6, 4382-4391.	14.6	48
96	Microwave-assisted fluorolytic sol–gel route to iron fluoride nanoparticles for Li-Ion batteries. Chemical Communications, 2014, 50, 460-462.	4.1	47
97	Tuning the NiO Thin Film Morphology on Carbon Nanotubes by Atomic Layer Deposition for Enzymeâ€Free Glucose Sensing. ChemElectroChem, 2019, 6, 383-392.	3.4	47
98	Insights into Charge Transfer at an Atomically Precise Nanocluster/Semiconductor Interface. Angewandte Chemie - International Edition, 2020, 59, 7748-7754.	13.8	47
99	Towards enhanced performances in gas sensing: SnO2 based nanocrystalline oxides application. Sensors and Actuators B: Chemical, 2007, 122, 564-571.	7.8	46
100	Microwave-assisted coating of carbon nanostructures with titanium dioxide for the catalytic dehydration of d-xylose into furfural. RSC Advances, 2013, 3, 2595.	3.6	45
101	Labeling and monitoring the distribution of anchoring sites on functionalized CNTs by atomic layer deposition. Journal of Materials Chemistry, 2012, 22, 7323.	6.7	44
102	Selective Dissolution of Surface Nickel Close to Platinum in PtNi Nanocatalyst toward Oxygen Reduction Reaction. Chemistry of Materials, 2016, 28, 1879-1887.	6.7	43
103	Oneâ€Step Synthesis and Optical Properties of Benzoate―and Biphenolateâ€Capped ZrO ₂ Nanoparticles. Advanced Functional Materials, 2012, 22, 4275-4283.	14.9	42
104	Zn _{0.35} Co _{0.65} O – A Stable and Highly Active Oxygen Evolution Catalyst Formed by Zinc Leaching and Tetrahedral Coordinated Cobalt in Wurtzite Structure. Advanced Energy Materials, 2019, 9, 1900328.	19.5	41
105	Non-aqueous sol–gel routes applied to atomic layer deposition of oxides. Journal of Materials Chemistry, 2009, 19, 454-462.	6.7	39
106	Colloidal Polymers from Dipolar Assembly of Cobalt-Tipped CdSe@CdS Nanorods. ACS Nano, 2014, 8, 3272-3284.	14.6	39
107	Gas sensing properties and p-type response of ALD TiO ₂ coated carbon nanotubes. Nanotechnology, 2015, 26, 024004.	2.6	39
108	Electrochemical Water Oxidation of Ultrathin Cobalt Oxide-Based Catalyst Supported onto Aligned ZnO Nanorods. ACS Applied Materials & Interfaces, 2016, 8, 3226-3232.	8.0	39

#	Article	IF	CITATIONS
109	ALD SnO ₂ protective decoration enhances the durability of a Pt based electrocatalyst. Journal of Materials Chemistry A, 2016, 4, 969-975.	10.3	39
110	Optical Response of Ultrafine Spherical Silver Nanoparticles Arranged in Hexagonal Planar Arrays Studied by the DDA Method. Journal of Physical Chemistry A, 2009, 113, 4094-4099.	2.5	38
111	The "benzyl alcohol route†An elegant approach towards doped and multimetal oxide nanocrystals. Journal of Sol-Gel Science and Technology, 2011, 57, 323-329.	2.4	38
112	Highly ordered and vertically oriented TiO ₂ /Al ₂ O ₃ nanotube electrodes for application in dye-sensitized solar cells. Nanotechnology, 2014, 25, 504003.	2.6	38
113	Chemical Modification of Graphene Oxide through Diazonium Chemistry and Its Influence on the Structure–Property Relationships of Graphene Oxide–Iron Oxide Nanocomposites. Chemistry - A European Journal, 2015, 21, 12465-12474.	3.3	38
114	Photoluminescent Rare-Earth Based Biphenolate Lamellar Nanostructures. Journal of Physical Chemistry C, 2007, 111, 2539-2544.	3.1	37
115	Atomic Layer Deposition to Materials for Gas Sensing Applications. Advanced Materials Interfaces, 2016, 3, 1600335.	3.7	37
116	In Situ Infrared Spectroscopic Study of Atomic Layer-Deposited TiO2 Thin Films by Nonaqueous Routes. Chemistry of Materials, 2013, 25, 1706-1712.	6.7	35
117	Highly Dispersible Hexagonal Carbon–MoS ₂ –Carbon Nanoplates with Hollow Sandwich Structures for Supercapacitors. Chemistry - A European Journal, 2019, 25, 4757-4766.	3.3	35
118	Transition metal sulfides meet electrospinning: versatile synthesis, distinct properties and prospective applications. Nanoscale, 2021, 13, 9112-9146.	5.6	35
119	Novel Synthesis of Anhydrous and Hydroxylated CuF ₂ Nanoparticles and Their Potential for Lithium Ion Batteries. Chemistry - A European Journal, 2018, 24, 7177-7187.	3.3	34
120	Unifying Concepts in Room-Temperature CO Oxidation with Gold Catalysts. ACS Catalysis, 2017, 7, 8247-8254.	11.2	33
121	Reversible Sodium and Lithium Insertion in Iron Fluoride Perovskites. Advanced Functional Materials, 2018, 28, 1802057.	14.9	33
122	Gas Sensing of NiOâ€SCCNT Core–Shell Heterostructures: Optimization by Radial Modulation of the Holeâ€Accumulation Layer. Advanced Functional Materials, 2020, 30, 1906874.	14.9	33
123	Geometric and electronic structure ofl³â~'V2O5:Comparison betweenl±â~'V2O5andl³â~'V2O5. Physical Review B, 2004, 69, .	3.2	32
124	Optical Properties of Lanthanide-Doped Lamellar Nanohybrids. ChemPhysChem, 2006, 7, 2215-2222.	2.1	31
125	Evaluation of Entropyâ€Stabilized (Mg _{0.2} Co _{0.2} Ni _{0.2} Cu _{0.2} Zn _{0.2})O Oxides Produced via Solvothermal Method or Electrospinning as Anodes in Lithiumâ€ion Batteries. Advanced	14.9	31
126	Functional Materials. 2022. 32 Atomic Layer Deposition of Metal Oxides and Chalcogenides for High Performance Transistors. Advanced Science, 2022, 9, .	11.2	30

#	Article	IF	CITATIONS
127	Magnetic properties of cobalt and manganese doped ZnO nanowires. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 118-124.	1.8	29
128	A general nonaqueous route to crystalline alkaline earth aluminate nanostructures. Nanoscale, 2009, 1, 360.	5.6	29
129	Micro-Raman investigation of vanadium-oxide coated tubular carbon nanofibers for gas-sensing applications. Diamond and Related Materials, 2010, 19, 590-594.	3.9	29
130	Nanoparticleself-assembly using ï€â€"ï€ interactions. Journal of Materials Chemistry A, 2013, 1, 2370-2378.	10.3	29
131	Cobalt-Assisted Morphology and Assembly Control of Co-Doped ZnO Nanoparticles. Nanomaterials, 2018, 8, 249.	4.1	28
132	Colloidal nanothermometers based on neodymium doped alkaline-earth fluorides in the first and second biological windows. Sensors and Actuators B: Chemical, 2017, 250, 147-155.	7.8	27
133	Carboxylic Acids as Oxygen Sources for the Atomic Layer Deposition of High-κ Metal Oxides. Journal of Physical Chemistry C, 2008, 112, 12754-12759.	3.1	26
134	Chemistry and physics of metal oxide nanostructures. Physical Chemistry Chemical Physics, 2009, 11, 3607.	2.8	26
135	Morphology Effects on the Supercapacitive Electrochemical Performances of Iron Oxide/Reduced Graphene Oxide Nanocomposites. ChemElectroChem, 2014, 1, 747-754.	3.4	26
136	Effect of 10 different TiO ₂ and ZrO ₂ (nano)materials on the soil invertebrate <i>Enchytraeus crypticus</i> . Environmental Toxicology and Chemistry, 2015, 34, 2409-2416.	4.3	26
137	Copper Thiophosphate (Cu ₃ PS ₄) as Electrode for Sodiumâ€ion Batteries with Ether Electrolyte. Advanced Functional Materials, 2020, 30, 1910583.	14.9	25
138	Synthesis and functional verification of the unsupported active phase of VxOy catalysts for partial oxidation of n-butane. Journal of Catalysis, 2005, 236, 221-232.	6.2	24
139	Fluorescent and paramagnetic core–shell hybrid nanoparticles for bi-modal magnetic resonance/luminescence imaging. Journal of Materials Chemistry, 2012, 22, 20641.	6.7	24
140	Synthesis and Assembly of Dipolar Heterostructured Tetrapods: Colloidal Polymers with "Giant <i>tertâ€butyl</i> ―Groups. Angewandte Chemie - International Edition, 2016, 55, 1787-1791.	13.8	24
141	A Self-Limited Atomic Layer Deposition of WS ₂ Based on the Chemisorption and Reduction of Bis(<i>t</i> -butylimino)bis(dimethylamino) Complexes. Chemistry of Materials, 2019, 31, 1881-1890.	6.7	24
142	Secondary Phosphine Oxide Functionalized Gold Clusters and Their Application in Photoelectrocatalytic Hydrogenation Reactions. Journal of the American Chemical Society, 2021, 143, 9595-9600.	13.7	24
143	Comparing the Performance of Nb ₂ O ₅ Composites with Reduced Graphene Oxide and Amorphous Carbon in Li―and Naâ€ŀon Electrochemical Storage Devices. ChemElectroChem, 2020, 7, 1689-1698.	3.4	23
144	The Importance of Ligand Selection on the Formation of Metal Phosphonate-Derived CoMoP and CoMoP ₂ Nanoparticles for Catalytic Hydrogen Evolution. ACS Applied Nano Materials, 2020, 3, 4147-4156.	5.0	23

#	Article	IF	CITATIONS
145	Verwey transition in single magnetite nanoparticles. Physical Review B, 2014, 90, .	3.2	22
146	Electrospun C/GeO 2 paper-like electrodes forÂflexible Li-ion batteries. International Journal of Hydrogen Energy, 2017, 42, 28102-28112.	7.1	22
147	Are Electrospun Fibrous Membranes Relevant Electrode Materials for Liâ€Ion Batteries? The Case of the C/Ge/GeO ₂ Composite Fibers. Advanced Functional Materials, 2018, 28, 1800938.	14.9	22
148	Enhanced activity of Pt-based electrocatalysts for oxygen reduction via a selective Pt deposition process. Journal of Electroanalytical Chemistry, 2011, 662, 70-79.	3.8	21
149	Microwave-assisted synthesis, characterization and ammonia sensing properties of polymer-capped star-shaped zinc oxide nanostructures. Journal of Nanoparticle Research, 2011, 13, 3327-3334.	1.9	21
150	Optimization of the Activity of Ni-Based Nanostructures for the Oxygen Evolution Reaction. ACS Applied Energy Materials, 2018, 1, 4554-4563.	5.1	21
151	A study on the microstructure and gas sensing properties of ITO nanocrystals. Thin Solid Films, 2007, 515, 8637-8640.	1.8	19
152	CoFe ₂ O ₄ â^'TiO ₂ and CoFe ₂ O ₄ â^'ZnO Thin Film Nanostructures Elaborated from Colloidal Chemistry and Atomic Layer Deposition. Langmuir, 2010, 26, 18400-18407.	3.5	19
153	Are Electrospun Carbon/Metal Oxide Composite Fibers Relevant Electrode Materials for Li-Ion Batteries?. Journal of the Electrochemical Society, 2016, 163, A2930-A2937.	2.9	19
154	Catalyst-free growth of carbon nanotube arrays directly on Inconel® substrates for electrochemical carbon-based electrodes. Journal of Materials Chemistry A, 2015, 3, 17804-17810.	10.3	18
155	USPIO size control through microwave nonaqueous sol-gel method for neoangiogenesis T ₂ MRI contrast agent. Nanomedicine, 2016, 11, 2769-2779.	3.3	18
156	Nucleation, Growth Mechanism, and Controlled Coating of ZnO ALD onto Vertically Aligned N-Doped CNTs. Langmuir, 2016, 32, 7038-7044.	3.5	18
157	A cross-species and model comparison of the acute toxicity of nanoparticles used in the pigment and ink industries. NanoImpact, 2018, 11, 20-32.	4.5	18
158	Reversible Insertion in AFeF ₃ (A = K ⁺ , NH ₄ ⁺) Cubic Iron Fluoride Perovskites. ACS Applied Materials & Interfaces, 2019, 11, 33132-33139.	8.0	18
159	Atomically Precise Bimetallic Nanoclusters as Photosensitizers in Photoelectrochemical Cells. Chemistry - A European Journal, 2019, 25, 4814-4820.	3.3	18
160	Niobiumâ€Doped Titanium Dioxide with High Dopant Contents for Enhanced Lithiumâ€lon Storage. ChemElectroChem, 2020, 7, 4016-4023.	3.4	18
161	Structure, Defects, and Magnetism of Electrospun Hematite Nanofibers Silica-Coated by Atomic Layer Deposition. Langmuir, 2020, 36, 1305-1319.	3.5	18
162	High-Entropy Spinel Oxides Produced via Sol-Gel and Electrospinning and Their Evaluation as Anodes in Li-Ion Batteries. Applied Sciences (Switzerland), 2022, 12, 5965.	2.5	18

#	Article	IF	CITATIONS
163	Turning periodic mesoporous organosilicas selective to CO ₂ /CH ₄ separation: deposition of aluminium oxide by atomic layer deposition. Journal of Materials Chemistry A, 2015, 3, 22860-22867.	10.3	17
164	Operando Mössbauer Spectroscopy Investigation of the Electrochemical Reaction with Lithium in Bronze-Type FeF ₃ ·0.33H ₂ O. Journal of Physical Chemistry C, 2016, 120, 23933-23943.	3.1	17
165	Metal phosphonate coordination networks and frameworks as precursors of electrocatalysts for the hydrogen and oxygen evolution reactions. Journal of Nanoparticle Research, 2018, 20, 1.	1.9	17
166	Tungsten Oxide Nanowires-Based Ammonia Gas Sensors. Sensor Letters, 2008, 6, 590-595.	0.4	17
167	Lanthanide-based lamellar nanohybrids: The case of erbium. Materials Science and Engineering C, 2007, 27, 1368-1371.	7.3	16
168	Selective deposition of Pt onto supported metal clusters for fuel cell electrocatalysts. Nanoscale, 2012, 4, 6461.	5.6	16
169	Synthesis of ferromagnetic cobalt nanoparticle tipped CdSe@CdS nanorods: critical role of Pt-activation. CrystEngComm, 2014, 16, 9461-9468.	2.6	15
170	Type I vs. quasi-type II modulation in CdSe@CdS tetrapods: ramifications for noble metal tipping. CrystEngComm, 2017, 19, 6443-6453.	2.6	15
171	<i>Operando</i> diffuse reflectance UV-vis spectroelectrochemistry for investigating oxygen evolution electrocatalysts. Catalysis Science and Technology, 2020, 10, 517-528.	4.1	15
172	Enhanced Photoluminescence Features of Rare Earth Phenylphosphonate Hybrid Nanostructures Synthesized under Nonaqueous Conditions. Journal of Physical Chemistry C, 2010, 114, 6290-6297.	3.1	14
173	Tin Dioxide–Carbon Heterostructures Applied to Gas Sensing: Structure-Dependent Properties and General Sensing Mechanism. Journal of Physical Chemistry C, O, , 130916143757006.	3.1	14
174	Improved electrocatalytic stability in ethanol oxidation by microwave-assisted selective deposition of SnO2 and Pt onto carbon. RSC Advances, 2013, 3, 7001.	3.6	14
175	Morphology-controlled MoS ₂ by low-temperature atomic layer deposition. Nanoscale, 2020, 12, 20404-20412.	5.6	14
176	Investigations of Carbon Nitride-Supported Mn3O4 Oxide Nanoparticles for ORR. Catalysts, 2020, 10, 1289.	3.5	14
177	Sb-SnO ₂ -Nanosized-Based Resistive Sensors for NO ₂ Detection. Journal of Sensors, 2009, 2009, 1-7.	1.1	13
178	Polarization Resistanceâ€Free Mn ₃ O ₄ â€Based Electrocatalysts for the Oxygen Reduction Reaction. ChemElectroChem, 2018, 5, 2010-2018.	3.4	13
179	The formation mechanism and chirality evolution of chiral carbon dots prepared <i>via</i> radical assisted synthesis at room temperature. Nanoscale, 2021, 13, 10478-10489.	5.6	13
180	Zirconia-doped nanoparticles: organic coating, polymeric entrapment and application as dual-imaging agents. Journal of Materials Chemistry B, 2013, 1, 919.	5.8	12

#	Article	IF	CITATIONS
181	Stabilization of Titanium Dioxide Nanoparticles at the Surface of Carbon Nanomaterials Promoted by Microwave Heating. Chemistry - A European Journal, 2015, 21, 14901-14910.	3.3	12
182	Vertically aligned N-doped CNTs growth using Taguchi experimental design. Applied Surface Science, 2015, 344, 57-64.	6.1	12
183	Stabilization of Mesoporous Iron Oxide Films against Sintering and Phase Transformations via Atomic Layer Deposition of Alumina and Silica. Advanced Materials Interfaces, 2018, 5, 1800360.	3.7	12
184	Insights into Charge Transfer at an Atomically Precise Nanocluster/Semiconductor Interface. Angewandte Chemie, 2020, 132, 7822-7828.	2.0	12
185	Role of Heterojunctions of Core–Shell Heterostructures in Gas Sensing. ACS Applied Materials & Interfaces, 2022, 14, 22041-22052.	8.0	12
186	A general soft-chemistry route to metal phosphate nanocrystals. Journal of Industrial and Engineering Chemistry, 2009, 15, 883-887.	5.8	11
187	Unusual Growth Behavior of Atomic Layer Deposited PbTiO ₃ Thin Films Using Water and Ozone As Oxygen Sources and Their Combination. Journal of Physical Chemistry C, 2010, 114, 12736-12741.	3.1	11
188	Atomic Layer Deposition of Silica on Carbon Nanotubes. Chemistry of Materials, 2017, 29, 4920-4931.	6.7	11
189	A general low-temperature synthesis route to polyanionic vanadium phosphate fluoride cathode materials: AVPO ₄ F (A = Li, Na, K) and Na ₃ V ₂ (PO ₄) ₂ F ₃ . Materials Chemistry Frontiers. 2019. 3. 2164-2174.	5.9	11
190	Vertically aligned TiO2/ZnO nanotube arrays prepared by atomic layer deposition for photovoltaic applications. Korean Journal of Chemical Engineering, 2019, 36, 1157-1163.	2.7	11
191	Effect of annealing and electrical properties of high-κ thin films grown by atomic layer deposition using carboxylic acids as oxygen source. Journal of Vacuum Science & Technology B, 2009, 27, 230-235.	1.3	10
192	Review. Non-aqueous Sol-Gel Routes to Metal Oxide Nanocrystals under Solvothermal Conditions: Review and Case Study on Doped Group IV Metal Oxides. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2010, 65, 1015-1023.	0.7	10
193	THz nanocrystal acoustic vibrations from ZrO2 3D supercrystals. Journal of Materials Chemistry C, 2013, 1, 8108.	5.5	10
194	Structural evolution of aragonite superstructures obtained in the presence of the siderophore deferoxamine. CrystEngComm, 2015, 17, 3927-3935.	2.6	10
195	Wavelength-dependent emission enhancement through the design of active plasmonic nanoantennas. Optics Express, 2011, 19, 17697.	3.4	9
196	Anomalous C-V response correlated to relaxation processes in TiO2 thin film based-metal-insulator-metal capacitor: Effect of titanium and oxygen defects. Journal of Applied Physics, 2015, 117, .	2.5	9
197	Coating of Vertically Aligned Carbon Nanotubes by a Novel Manganese Oxide Atomic Layer Deposition Process for Binderâ€Free Hybrid Capacitors. Advanced Materials Interfaces, 2016, 3, 1600313.	3.7	9
198	A Superior Sodium/Lithium-Ion Storage Material: Sea Sponge C/Sn ₂ Fe@GO. Inorganic Chemistry, 2019, 58, 7915-7924.	4.0	9

#	Article	IF	CITATIONS
199	Atomic Layer Deposition for Microelectronic Applications. , 2012, , 159-192.		8
200	In-Vacuum Projection of Nanoparticles for On-Chip Tunneling Spectroscopy. ACS Nano, 2013, 7, 1487-1494.	14.6	8
201	Effect of passivating Al2O3 thin films on MnO2/carbon nanotube composite lithium-ion battery anodes. Journal of Nanoparticle Research, 2018, 20, 1.	1.9	8
202	Fluorolytic Sol–Gel Route and Electrochemical Properties of Polyanionic Transitionâ€Metal Phosphate Fluorides. Chemistry - A European Journal, 2019, 25, 6189-6195.	3.3	8
203	ALDâ€Coated Mesoporous Iridiumâ€Titanium Mixed Oxides: Maximizing Iridium Utilization for an Outstanding OER Performance. Advanced Materials Interfaces, 2022, 9, .	3.7	8
204	Atomic Layer Deposition of MoS ₂ Decorated TiO ₂ Nanotubes for Photoelectrochemical Water Splitting. Advanced Materials Interfaces, 2022, 9, .	3.7	8
205	Nanoparticles charge response from electrostatic force microscopy. Applied Physics Letters, 2013, 102, ·	3.3	7
206	Impact of Different Intermediate Layers on the Morphology and Crystallinity of TiO ₂ Grown on Carbon Nanotubes by Atomic Layer Deposition. Advanced Materials Interfaces, 2021, 8, 2100759.	3.7	7
207	Influence of the Electronic Properties of the Ligand on the Photoelectrochemical Behavior of Au ₂₅ Nanocluster-Sensitized TiO ₂ Photoanode. Journal of Physical Chemistry C, 2022, 126, 1778-1784.	3.1	7
208	Oxide Synthesis as Cornerstone of Nanoscience: Eur. J. Inorg. Chem. 6/2008. European Journal of Inorganic Chemistry, 2008, 2008, 825-825.	2.0	6
209	Nonaqueous sol–gel chemistry applied to atomic layer deposition: tuning of photonic band gap properties of silica opals. Nanoscale, 2010, 2, 786.	5.6	6
210	Hybrid dandelion-like YH(O3PC6H5)2:Ln (Ln = Eu3+, Tb3+) particles: formation mechanism, thermal and photoluminescence properties. CrystEngComm, 2011, 13, 5226.	2.6	6
211	Fluoro(Phosphates,Sulfates) or (Phosphate,Sulfate) Fluorides: Why Does It Matter?. Advanced Energy Materials, 2021, 11, 2002971.	19.5	6
212	SnO ₂ ‣iO ₂ 1D Core‣hell Nanowires Heterostructures for Selective Hydrogen Sensing. Advanced Materials Interfaces, 2021, 8, 2100939.	3.7	6
213	Dual Doping of MoP with M(Mn,Fe) and S to Achieve High Hydrogen Evolution Reaction Activity in Both Acidic and Alkaline Media. ChemCatChem, 2021, 13, 4392-4402.	3.7	6
214	Preparation and Characterization of SnO Nanoplatelets by Microwave Innovative Technique. AIP Conference Proceedings, 2008, , .	0.4	5
215	CNT/Al ₂ O ₃ core–shell nanostructures for the electrochemical detection of dihydroxybenzene isomers. Physical Chemistry Chemical Physics, 2021, 23, 14064-14074.	2.8	5
216	Nonaqueous synthesis of high-purity indium and tin oxide nanocrystals and their application as gas		4

sensors., 0, , .

#	Article	IF	CITATIONS
217	Ultra simple catalyst layer preparation for the growth of vertically aligned CNTs and CNT-based nanostructures. CrystEngComm, 2012, 14, 48-52.	2.6	4
218	MOx/CNTs Hetero-Structures for Gas Sensing Applications: Role of CNTs Defects. Procedia Engineering, 2012, 47, 1259-1262.	1.2	4
219	Self-assembled supracrystals and hetero-structures made from colloidal nanocrystals. CrystEngComm, 2014, 16, 9365-9367.	2.6	4
220	On the plasmon-assisted detection of a 1585 cmâ^'1 mode in the 532 nm Raman spectra of crystalline α -Fe2O3/polycrystalline NiO core/shell nanofibers. Applied Physics Letters, 2021, 118, .	3.3	4
221	Sensing Properties of SnO2/CNFs Hetero-Junctions. Lecture Notes in Electrical Engineering, 2012, , 105-108.	0.4	4
222	Sodium niobate based hierarchical 3D perovskite nanoparticle clusters. Dalton Transactions, 2020, 49, 15195-15203.	3.3	3
223	Mesoporous WC x Films with NiOâ€Protected Surface: Highly Active Electrocatalysts for the Alkaline Oxygen Evolution Reaction. ChemSusChem, 2021, 14, 4708-4717.	6.8	3
224	Nonaqueous and Halide-Free Route to Crystalline BaTiO3, SrTiO3, and (Ba,Sr)TiO3 Nanoparticles via a Mechanism Involving C—C Bond Formation ChemInform, 2004, 35, no.	0.0	2
225	Microstructural, Electrical and Hydrogen Sensing Properties of F-SnO2 Nanoparticles. Procedia Engineering, 2014, 87, 1087-1090.	1.2	2
226	Journal of Nanoparticle Research: looking forward. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	2
227	<i>(Invited) </i> Non-Aqueous Atomic Layer Deposition of SnO ₂ for Gas Sensing Application. ECS Transactions, 2018, 86, 55-65.	0.5	2
228	Polyethylene/phosphors composites, a novel treatment for LDPE plastic. Optical Materials, 2019, 96, 109336.	3.6	2
229	Size and Shape Control of Nanocrystals Synthesized in Reverse Micelles: V2O5 Nanorods and CdS Nanotriangles. Microscopy and Microanalysis, 2003, 9, 188-189.	0.4	1
230	Synthesis, Characterization and Sensing Applications of Nanotubular TiO2-Based Materials. Lecture Notes in Electrical Engineering, 2011, , 151-154.	0.4	1
231	Sensing Behavior of SnO2-Graphene Nanocomposites. Lecture Notes in Electrical Engineering, 2014, , 417-420.	0.4	1
232	Phonons in Hybrid Lamellar Supercrystals. Journal of Physical Chemistry C, 2017, 121, 1990-1996.	3.1	1
233	Single Crystal Manganese Oxide Multipods by Oriented Attachment ChemInform, 2006, 37, no.	0.0	0
234	Carboxylic Acids as Oxygen Supplying Agents for Atomic Layer Deposition of High-k Thin Films. ECS Transactions, 2008, 16, 279-289.	0.5	0

235 Comment on "Unusual Photoluminescence of CaHfO ₃ and SrHfO ₃ 3 14.9 14.9	0
Development of an amperometric H <inf>2</inf> O <inf>2</inf> sensor based on MOx/reduced graphene oxide nanocomposites. , 2013, , .	0
 Synthesis and Assembly of Dipolar Heterostructured Tetrapods: Colloidal Polymers with "Giant tertâ€butyl ―Groups. Angewandte Chemie, 2016, 128, 1819-1823. 	0
Effect of Al2O3 thickness on performance of Al2O3/CNTS in the electrochemical sensing of di- hydroxybenzene isomers. , 2019, , .	0
²³⁹ Microwave-Assisted Synthesis of Metal Oxide Nanostructures for Sensing Applications. Lecture Notes 0.4 in Electrical Engineering, 2011, , 55-59.	0