Huib Versnel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7790592/publications.pdf

Version: 2024-02-01

		279798	302126
59	1,759 citations	23	39
papers	citations	h-index	g-index
59	59	59	1470
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	No Protective Effects of Hair Cells or Supporting Cells in Ototoxically Deafened Guinea Pigs upon Administration of BDNF. Brain Sciences, 2022, 12, 2.	2.3	6
2	Cortical potentials evoked by tone frequency changes can predict speech perception in noise. Hearing Research, 2022, 420, 108508.	2.0	3
3	The Acoustic Change Complex Compared to Hearing Performance in Unilaterally and Bilaterally Deaf Cochlear Implant Users. Ear and Hearing, 2022, 43, 1783-1799.	2.1	6
4	Scalar Translocation Comparison Between Lateral Wall and Perimodiolar Cochlear Implant Arrays ―A <scp>Metaâ€Analysis</scp> . Laryngoscope, 2021, 131, 1358-1368.	2.0	43
5	BDNF-mediated preservation of spiral ganglion cell peripheral processes and axons in comparison to that of their cell bodies. Hearing Research, 2021, 400, 108114.	2.0	15
6	Cortical potentials evoked by tone frequency changes compared to frequency discrimination and speech perception: Thresholds in normal-hearing and hearing-impaired subjects. Hearing Research, 2021, 401, 108154.	2.0	7
7	LGR5-Positive Supporting Cells Survive Ototoxic Trauma in the Adult Mouse Cochlea. Frontiers in Molecular Neuroscience, 2021, 14, 729625.	2.9	8
8	Evaluating cochlear insertion trauma and hearing preservation after cochlear implantation (CIPRES): a study protocol for a randomized single-blind controlled trial. Trials, 2021, 22, 895.	1.6	4
9	BDNF Outperforms TrkB Agonist 7,8,3′-THF in Preserving the Auditory Nerve in Deafened Guinea Pigs. Brain Sciences, 2020, 10, 787.	2.3	15
10	Simultaneous rather than retrograde spiral ganglion cell degeneration following ototoxically induced hair cell loss in the guinea pig cochlea. Hearing Research, 2020, 390, 107928.	2.0	14
11	Cortical Auditory Evoked Potentials in Response to Frequency Changes with Varied Magnitude, Rate, and Direction. JARO - Journal of the Association for Research in Otolaryngology, 2019, 20, 489-498.	1.8	12
12	Assessing auditory nerve condition by tone decay in deaf subjects with a cochlear implant. International Journal of Audiology, 2018, 57, 864-871.	1.7	2
13	Predicting Performance and Non-Use in Prelingually Deaf and Late-Implanted Cochlear Implant Users. Otology and Neurotology, 2018, 39, e436-e442.	1.3	16
14	The Sound of a Cochlear Implant Investigated in Patients With Single-Sided Deafness and a Cochlear Implant. Otology and Neurotology, 2018, 39, 707-714.	1.3	10
15	Degeneration of auditory nerve fibers in guinea pigs with severe sensorineural hearing loss. Hearing Research, 2017, 345, 79-87.	2.0	12
16	Towards Clinical Application of Neurotrophic Factors to the Auditory Nerve; Assessment of Safety and Efficacy by a Systematic Review of Neurotrophic Treatments in Humans. International Journal of Molecular Sciences, 2016, 17, 1981.	4.1	12
17	Assessing the Firing Properties of the Electrically Stimulated Auditory Nerve Using a Convolution Model. Advances in Experimental Medicine and Biology, 2016, 894, 143-153.	1.6	9
18	Local Delivery of Brain-Derived Neurotrophic Factor on the Perforated Round Window Membrane in Guinea Pigs. Otology and Neurotology, 2015, 36, 705-713.	1.3	11

#	Article	IF	CITATIONS
19	Spectrotemporal Response Properties of Core Auditory Cortex Neurons in Awake Monkey. PLoS ONE, 2015, 10, e0116118.	2.5	16
20	Recovery characteristics of the electrically stimulated auditory nerve in deafened guinea pigs: Relation to neuronal status. Hearing Research, 2015, 321, 12-24.	2.0	44
21	Diffusion tensor imaging of the auditory nerve in patients with long-term single-sided deafness. Hearing Research, 2015, 323, 1-8.	2.0	24
22	Altered Cortical Activity in Prelingually Deafened Cochlear Implant Users Following Long Periods of Auditory Deprivation. JARO - Journal of the Association for Research in Otolaryngology, 2015, 16, 159-170.	1.8	16
23	The influence of newborn hearing screening on the age at cochlear implantation in children. Laryngoscope, 2015, 125, 985-990.	2.0	19
24	Delayed Auditory Brainstem Responses in Prelingually Deaf and Late-Implanted Cochlear Implant Users. JARO - Journal of the Association for Research in Otolaryngology, 2015, 16, 669-678.	1.8	13
25	Temporary Neurotrophin Treatment Prevents Deafness-Induced Auditory Nerve Degeneration and Preserves Function. Journal of Neuroscience, 2015, 35, 12331-12345.	3.6	65
26	Taskâ€related preparatory modulations multiply with acoustic processing in monkey auditory cortex. European Journal of Neuroscience, 2014, 39, 1538-1550.	2.6	13
27	Comparing Mechanical Effects and Sound Production of KTP, Thulium, and CO2 Laser in Stapedotomy. Otology and Neurotology, 2014, 35, 1156-1162.	1.3	9
28	Does Vestibular End-Organ Function Recover after Gentamicin-Induced Trauma in Guinea Pigs?. Audiology and Neuro-Otology, 2014, 19, 135-150.	1.3	13
29	Behavioral responses of deafened guinea pigs to intracochlear electrical stimulation: a new rapid psychophysical procedure. Hearing Research, 2014, 313, 67-74.	2.0	6
30	Auditory-Nerve Responses to Varied Inter-Phase Gap and Phase Duration of the Electric Pulse Stimulus as Predictors for Neuronal Degeneration. JARO - Journal of the Association for Research in Otolaryngology, 2014, 15, 187-202.	1.8	141
31	Spiral ganglion cell morphology in guinea pigs after deafening and neurotrophic treatment. Hearing Research, 2013, 298, 17-26.	2.0	35
32	Stable bottomâ€up processing during dynamic topâ€down modulations in monkey auditory cortex. European Journal of Neuroscience, 2013, 37, 1830-1842.	2.6	12
33	Bilateral Low-Frequency Repetitive Transcranial Magnetic Stimulation of the Auditory Cortex in Tinnitus Patients Is Not Effective: A Randomised Controlled Trial. Audiology and Neuro-Otology, 2013, 18, 362-373.	1.3	41
34	Octave effect in auditory attention. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15225-15230.	7.1	14
35	The Role of Electrophonics in Electroacoustic Stimulation of the Guinea Pig Cochlea. Otology and Neurotology, 2013, 34, 579-587.	1.3	9
36	A Guinea Pig Model of Selective Severe High-Frequency Hearing Loss. Otology and Neurotology, 2013, 34, 1510-1518.	1.3	7

#	Article	IF	Citations
37	Combined Administration of Kanamycin and Furosemide Does Not Result in Loss of Vestibular Function in Guinea Pigs. Audiology and Neuro-Otology, 2012, 17, 25-38.	1.3	10
38	Neurotrophins and their role in the cochlea. Hearing Research, 2012, 288, 19-33.	2.0	90
39	Spiral ganglion cell survival after round window membrane application of brain-derived neurotrophic factor using gelfoam as carrier. Hearing Research, 2011, 272, 168-177.	2.0	62
40	Effects of electrical stimulation on the acoustically evoked auditory-nerve response in guinea pigs with a high-frequency hearing loss. Hearing Research, 2011, 272, 95-107.	2.0	14
41	Suppression of the acoustically evoked auditory-nerve response by electrical stimulation in the cochlea of the guinea pig. Hearing Research, 2010, 259, 64-74.	2.0	26
42	Chronic electrical stimulation does not prevent spiral ganglion cell degeneration in deafened guinea pigs. Hearing Research, 2010, 269, 169-179.	2.0	27
43	Spectrotemporal Response Properties of Inferior Colliculus Neurons in Alert Monkey. Journal of Neuroscience, 2009, 29, 9725-9739.	3.6	38
44	Enhanced Survival of Spiral Ganglion Cells After Cessation of Treatment with Brain-Derived Neurotrophic Factor in Deafened Guinea Pigs. JARO - Journal of the Association for Research in Otolaryngology, 2009, 10, 355-367.	1.8	105
45	Language development before and after temporal surgery in children with intractable epilepsy. Epilepsia, 2009, 50, 2408-2419.	5.1	23
46	Morphological changes in spiral ganglion cells after intracochlear application of brain-derived neurotrophic factor in deafened guinea pigs. Hearing Research, 2008, 244, 25-34.	2.0	74
47	Time course of cochlear electrophysiology and morphology after combined administration of kanamycin and furosemide. Hearing Research, 2007, 231, 1-12.	2.0	77
48	Development of contralateral and ipsilateral frequency representations in ferret primary auditory cortex. European Journal of Neuroscience, 2006, 23, 780-792.	2.6	34
49	Involvement of Monkey Inferior Colliculus in Spatial Hearing. Journal of Neuroscience, 2004, 24, 4145-4156.	3.6	88
50	Optical Imaging of Intrinsic Signals in Ferret Auditory Cortex: Responses to Narrowband Sound Stimuli. Journal of Neurophysiology, 2002, 88, 1545-1558.	1.8	43
51	Responses to linear and logarithmic frequency-modulated sweeps in ferret primary auditory cortex. European Journal of Neuroscience, 2000, 12, 549-562.	2.6	112
52	Spectral-ripple representation of steady-state vowels in primary auditory cortex. Journal of the Acoustical Society of America, 1998, 103, 2502-2514.	1.1	62
53	Auditory-nerve fiber responses to clicks in guinea pigs with a damaged cochlea. Journal of the Acoustical Society of America, 1997, 101, 993-1009.	1.1	13
54	Multi-electrode array for measuring evoked potentials from surface of ferret primary auditory cortex. Journal of Neuroscience Methods, 1995, 58, 209-220.	2.5	45

#	Article	IF	CITATION
55	Recovery characteristics of auditory nerve fibres in the normal and noise-damaged guinea pig cochlea. Hearing Research, 1993, 71, 190-201.	2.0	18
56	Round-window recorded potential of single-fibre discharge (unit response) in normal and noise-damaged cochleas. Hearing Research, 1992, 59, 157-170.	2.0	30
57	Single-fibre and whole-nerve responses to clicks as a function of sound intensity in the guinea pig. Hearing Research, 1992, 59, 138-156.	2.0	36
58	Single-fibre responses to clicks in relationship to the compound action potential in the guinea pig. Hearing Research, 1990, 46, 147-160.	2.0	29
59	Short-Latency Evoked Potentials of the Human Auditory System. , 0, , .		1