Aaron P Esser-Kahn

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7790322/aaron-p-esser-kahn-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

73	2,611	23	50
papers	citations	h-index	g-index
80	3,005 ext. citations	10.9	5.15
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
73	Robust tolerogenic dendritic cells via push/pull pairing of toll-like-receptor agonists and immunomodulators reduces EAE. <i>Biomaterials</i> , 2022 , 121571	15.6	O
72	Subunit Vaccines Using TLR Triagonist Combination Adjuvants Provide Protection Against While Minimizing Reactogenic Responses. <i>Frontiers in Immunology</i> , 2021 , 12, 653092	8.4	5
71	and Analyses of the Effects of Source, Length, and Charge on the Cytotoxicity and Immunocompatibility of Cellulose Nanocrystals. <i>ACS Biomaterials Science and Engineering</i> , 2021 , 7, 1450	-5:461	5
70	Site-specific antigen-adjuvant conjugation using cell-free protein synthesis enhances antigen presentation and CD8 T-cell response. <i>Scientific Reports</i> , 2021 , 11, 6267	4.9	1
69	Mechanically Promoted Synthesis of Polymer Organogels via Disulfide Bond Cross-Linking <i>ACS Macro Letters</i> , 2021 , 10, 799-804	6.6	2
68	Demonstration of the photothermal catalysis of the Sabatier reaction using nickel nanoparticles and solar spectrum light <i>RSC Advances</i> , 2021 , 11, 8394-8397	3.7	1
67	A synthetic pathogen mimetic molecule induces a highly amplified synergistic immune response activation of multiple signaling pathways. <i>Chemical Science</i> , 2021 , 12, 6646-6651	9.4	O
66	Receptor-Ligand Kinetics Influence the Mechanism of Action of Covalently Linked TLR Ligands. <i>ACS Chemical Biology</i> , 2021 , 16, 380-388	4.9	2
65	Bio-inspired mechanically adaptive materials through vibration-induced crosslinking. <i>Nature Materials</i> , 2021 , 20, 869-874	27	17
64	Manipulating Frontal Polymerization and Instabilities with Phase-Changing Microparticles. <i>Journal of Physical Chemistry B</i> , 2021 , 125, 7537-7545	3.4	2
63	Improving the Adjuvanticity of Small Molecule Immune Potentiators Using Covalently Linked NF- B Modulators. <i>ACS Medicinal Chemistry Letters</i> , 2021 , 12, 1441-1448	4.3	
62	Controllable Frontal Polymerization and Spontaneous Patterning Enabled by Phase-Changing Particles. <i>Small</i> , 2021 , 17, e2102217	11	4
61	Determining Whether Agonist Density or Agonist Number Is More Important for Immune Activation via Micoparticle Based Assay. <i>Frontiers in Immunology</i> , 2020 , 11, 642	8.4	1
60	Tuning Subunit Vaccines with Novel TLR Triagonist Adjuvants to Generate Protective Immune Responses against. <i>Journal of Immunology</i> , 2020 , 204, 611-621	5.3	12
59	From Glucose to Polymers: A Continuous Chemoenzymatic Process. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 18943-18947	16.4	5
58	From Glucose to Polymers: A Continuous Chemoenzymatic Process. <i>Angewandte Chemie</i> , 2020 , 132, 191	956-19	 1 <u>0</u> 9
57	Pathogen-like Nanoassemblies of Covalently Linked TLR Agonists Enhance CD8 and NK Cell-Mediated Antitumor Immunity. <i>ACS Central Science</i> , 2020 , 6, 2071-2078	16.8	2

(2017-2020)

56	Small Molecule NF- B Inhibitors as Immune Potentiators for Enhancement of Vaccine Adjuvants. <i>Frontiers in Immunology</i> , 2020 , 11, 511513	8.4	6
55	Increased vaccine tolerability and protection via NF-B modulation. Science Advances, 2020, 6,	14.3	12
54	100th Anniversary of Macromolecular Science Viewpoint: Piezoelectrically Mediated Mechanochemical Reactions for Adaptive Materials. <i>ACS Macro Letters</i> , 2020 , 9, 1237-1248	6.6	8
53	Correlating the structure and reactivity of a contact allergen, DNCB, and its analogs to sensitization potential. <i>Bioorganic and Medicinal Chemistry</i> , 2019 , 27, 2985-2990	3.4	O
52	Photon upconversion for the enhancement of microfluidic photochemical synthesis <i>RSC Advances</i> , 2019 , 9, 26172-26175	3.7	3
51	Linked Toll-Like Receptor Triagonists Stimulate Distinct, Combination-Dependent Innate Immune Responses. <i>ACS Central Science</i> , 2019 , 5, 1137-1145	16.8	24
50	Mechanically Initiated Bulk-Scale Free-Radical Polymerization. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 12023-12026	16.4	24
49	Mechanically Initiated Bulk-Scale Free-Radical Polymerization. <i>Angewandte Chemie</i> , 2019 , 131, 12151-1	23.54	8
48	Mitigation of Hydrophobicity-Induced Immunotoxicity by Sugar Poly(orthoesters). <i>Journal of the American Chemical Society</i> , 2019 , 141, 4510-4514	16.4	14
47	Applications of Immunomodulatory Immune Synergies to Adjuvant Discovery and Vaccine Development. <i>Trends in Biotechnology</i> , 2019 , 37, 373-388	15.1	43
46	Bio-inspired counter-current multiplier for enrichment of solutes. <i>Nature Communications</i> , 2018 , 9, 736	17.4	6
45	Toll-like Receptor Agonist Conjugation: A Chemical Perspective. <i>Bioconjugate Chemistry</i> , 2018 , 29, 587-0	6 6 33	50
44	Ultrasound Promoted Step-Growth Polymerization and Polymer Crosslinking Via Copper Catalyzed AzideAlkyne Click Reaction. <i>Angewandte Chemie</i> , 2018 , 130, 11378-11382	3.6	9
43	Ultrasound Promoted Step-Growth Polymerization and Polymer Crosslinking Via Copper Catalyzed Azide-Alkyne "Click" Reaction. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 11208-11212	16.4	30
42	Transiently Thermoresponsive Acetal Polymers for Safe and Effective Administration of Amphotericin B as a Vaccine Adjuvant. <i>Bioconjugate Chemistry</i> , 2018 , 29, 748-760	6.3	12
41	Structural Remodeling of Polymeric Material via Diffusion Controlled Polymerization and Chain Scission. <i>Chemistry of Materials</i> , 2018 , 30, 8126-8133	9.6	
40	Immunomodulation of the NLRP3 Inflammasome through Structure-Based Activator Design and Functional Regulation via Lysosomal Rupture. <i>ACS Central Science</i> , 2018 , 4, 982-995	16.8	24
39	Cancer Cell Lysate Entrapment in CaCO3 Engineered with Polymeric TLR-Agonists: Immune-Modulating Microparticles in View of Personalized Antitumor Vaccination. <i>Chemistry of Materials</i> , 2017 , 29, 4209-4217	9.6	25

38	A Photoactivatable Innate Immune Receptor for Optogenetic Inflammation. <i>ACS Chemical Biology</i> , 2017 , 12, 347-350	4.9	7
37	Surface Coating of Nanoparticles Reduces Background Inflammatory Activity while Increasing Particle Uptake and Delivery. <i>ACS Biomaterials Science and Engineering</i> , 2017 , 3, 206-213	5.5	12
36	Photothermal Nanoparticle Initiation Enables Radical Polymerization and Yields Unique, Uniform Microfibers with Broad Spectrum Light. <i>ACS Applied Materials & District Materials</i> (2017), 9, 39034-39039	9.5	9
35	Light Guided In-vivo Activation of Innate Immune Cells with Photocaged TLR 2/6 Agonist. <i>Scientific Reports</i> , 2017 , 7, 8074	4.9	11
34	Cooperative CO Absorption Isotherms from a Bifunctional Guanidine and Bifunctional Alcohol. <i>ACS Central Science</i> , 2017 , 3, 1271-1275	16.8	9
33	Immune Response Modulation of Conjugated Agonists with Changing Linker Length. <i>ACS Chemical Biology</i> , 2016 , 11, 3347-3352	4.9	14
32	Determination of Factors Influencing the Wet Etching of Polydimethylsiloxane Using Tetra-n-butylammonium Fluoride. <i>Macromolecular Chemistry and Physics</i> , 2016 , 217, 284-291	2.6	13
31	Surface modification of carbon black nanoparticles enhances photothermal separation and release of CO2. <i>Carbon</i> , 2016 , 105, 126-135	10.4	18
30	Bio-Inspired Morphogenesis Using Microvascular Networks and Reaction Diffusion. <i>Chemistry of Materials</i> , 2015 , 27, 4871-4876	9.6	7
29	Controlling the Origins of Inflammation with a Photoactive Lipopeptide Immunopotentiator. <i>Angewandte Chemie</i> , 2015 , 127, 6060-6063	3.6	6
28	Solvent Effects on the Photothermal Regeneration of CO2 in Monoethanolamine Nanofluids. <i>ACS Applied Materials & District Materials & D</i>	9.5	11
27	In vivo characterization of the physicochemical properties of polymer-linked TLR agonists that enhance vaccine immunogenicity. <i>Nature Biotechnology</i> , 2015 , 33, 1201-10	44.5	280
26	Modulation of Innate Immune Responses Covalently Linked TLR Agonists. <i>ACS Central Science</i> , 2015 , 1, 439-448	16.8	42
25	A Light-Controlled TLR4 Agonist and Selectable Activation of Cell Subpopulations. <i>ChemBioChem</i> , 2015 , 16, 1744-8	3.8	8
24	Controlling the origins of inflammation with a photoactive lipopeptide immunopotentiator. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 5962-5	16.4	17
23	Directing the immune system with chemical compounds. ACS Chemical Biology, 2014, 9, 1075-85	4.9	42
22	Bio-inspired microvascular exchangers employing circular packing Bynthetic rete mirabile. <i>Materials Horizons</i> , 2014 , 1, 602-607	14.4	3
21	Stimulation of innate immune cells by light-activated TLR7/8 agonists. <i>Journal of the American Chemical Society</i> , 2014 , 136, 10823-5	16.4	31

(2006-2014)

Covalently coupled immunostimulant heterodimers. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 189-92	16.4	27
Covalently Coupled Immunostimulant Heterodimers. <i>Angewandte Chemie</i> , 2014 , 126, 193-196	3.6	5
Photothermal release of CO2 from capture solutions using nanoparticles. <i>Energy and Environmental Science</i> , 2014 , 7, 2603-2607	35.4	18
Covalent modification of cell surfaces with TLR agonists improves & directs immune stimulation. <i>Chemical Communications</i> , 2013 , 49, 9618-20	5.8	16
The Effect of Membrane Thickness on a Microvascular Gas Exchange Unit. <i>Advanced Functional Materials</i> , 2013 , 23, 100-106	15.6	11
Process of making three-dimensional microstructures using vaporization of a sacrificial component. <i>Journal of Visualized Experiments</i> , 2013 , e50459	1.6	5
A Microvascular System for Chemical Reactions Using Surface Waste Heat. <i>Angewandte Chemie</i> , 2013 , 125, 13976-13979	3.6	2
A microvascular system for chemical reactions using surface waste heat. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 13731-4	16.4	12
Chemical treatment of poly(lactic acid) fibers to enhance the rate of thermal depolymerization. <i>ACS Applied Materials & District Applied & District Applied & District Applied & District App</i>	9.5	51
Triggered Release from Polymer Capsules. <i>Macromolecules</i> , 2011 , 44, 5539-5553	5.5	487
Three-dimensional microvascular fiber-reinforced composites. <i>Advanced Materials</i> , 2011 , 23, 3654-8	24	178
Hybrid Materials: Three-Dimensional Microvascular Fiber-Reinforced Composites (Adv. Mater. 32/2011). <i>Advanced Materials</i> , 2011 , 23, 3653-3653	24	1
Identification of highly reactive sequences for PLP-mediated bioconjugation using a combinatorial peptide library. <i>Journal of the American Chemical Society</i> , 2010 , 132, 16812-7	16.4	62
Incorporation of antifreeze proteins into polymer coatings using site-selective bioconjugation. <i>Journal of the American Chemical Society</i> , 2010 , 132, 13264-9	16.4	77
Programmable microcapsules from self-immolative polymers. <i>Journal of the American Chemical Society</i> , 2010 , 132, 10266-8	16.4	172
Metallothionein-cross-linked hydrogels for the selective removal of heavy metals from water.	16.4	84
Journal of the American Chemical Society, 2008 , 130, 15820-2		
Protein-cross-linked polymeric materials through site-selective bioconjugation. Angewandte Chemie - International Edition, 2008, 47, 3751-4	16.4	68
	Covalently Coupled Immunostimulant Heterodimers. Angewandte Chemie, 2014, 126, 193-196 Photothermal release of CO2 from capture solutions using nanoparticles. Energy and Environmental Science, 2014, 7, 2603-2607 Covalent modification of cell surfaces with TLR agonists improves & directs immune stimulation. Chemical Communications, 2013, 49, 9618-20 The Effect of Membrane Thickness on a Microvascular Gas Exchange Unit. Advanced Functional Materials, 2013, 23, 100-106 Process of making three-dimensional microstructures using vaporization of a sacrificial component. Journal of Visualized Experiments, 2013, e50459 A Microvascular System for Chemical Reactions Using Surface Waste Heat. Angewandte Chemie, 2013, 125, 13976-13979 A microvascular system for chemical reactions using surface waste heat. Angewandte Chemie International Edition, 2013, 52, 13731-4 Chemical treatment of poly(lactic acid) fibers to enhance the rate of thermal depolymerization. ACS Applied Materials & Amp; Interfaces, 2012, 4, 503-9 Triggered Release from Polymer Capsules. Macromolecules, 2011, 44, 5539-5553 Three-dimensional microvascular fiber-reinforced composites. Advanced Materials, 2011, 23, 3654-8 Hybrid Materials: Three-Dimensional Microvascular Fiber-Reinforced Composites (Adv. Mater. 32/2011). Advanced Materials, 2011, 23, 3653-3653 Identification of highly reactions for PLP-mediated bioconjugation using a combinatorial peptide library. Journal of the American Chemical Society, 2010, 132, 16812-7 Incorporation of antifreeze proteins into polymer coatings using site-selective bioconjugation. Journal of the American Chemical Society, 2010, 132, 13264-9 Programmable microcapsules from self-immolative polymers. Journal of the American Chemical Society, 2010, 132, 10266-8	Covalently Coupled Immunostimulant Heterodimers. Angewandte Chemie, 2014, 126, 193-196 Photothermal release of CO2 from capture solutions using nanoparticles. Energy and Environmental Science, 2014, 7, 2603-2607 Covalent modification of cell surfaces with TLR agonists improves & directs immune stimulation. Chemical Communications, 2013, 49, 9618-20 The Effect of Membrane Thickness on a Microvascular Gas Exchange Unit. Advanced Functional Materials, 2013, 23, 100-106 Process of making three-dimensional microstructures using vaporization of a sacrificial component. Journal of Visualized Experiments, 2013, e50459 A Microvascular System for Chemical Reactions Using Surface Waste Heat. Angewandte Chemie, 2013, 125, 13976-13979 A microvascular system for chemical reactions using surface waste heat. Angewandte Chemie-International Edition, 2013, 52, 13731-4 Chemical treatment of poly(lactic acid) fibers to enhance the rate of thermal depolymerization. ACS Applied Materials & Depolyment Capsules. Macromolecules, 2011, 44, 5539-5553 Triggered Release from Polymer Capsules. Macromolecules, 2011, 44, 5539-5553 Three-dimensional microvascular fiber-reinforced composites. Advanced Materials, 2011, 23, 3654-8 Hybrid Materials: Three-Dimensional Microvascular Fiber-Reinforced Composites (Adv. Mater. 32/2011). Advanced Materials, 2011, 23, 3653-3653 Identification of highly reactive sequences for PLP-mediated bioconjugation using a combinatorial peptide library. Journal of the American Chemical Society, 2010, 132, 16812-7 Incorporation of antifreeze proteins into polymer coatings using site-selective bioconjugation. Journal of the American Chemical Society, 2010, 132, 13264-9 Programmable microcapsules from self-immolative polymers. Journal of the American Chemical Society, 2010, 132, 10266-8

N-Terminal Protein Modification through a Biomimetic Transamination Reaction. *Angewandte Chemie*, **2006**, 118, 5433-5437

3.6 62

Modification of aniline containing proteins using an oxidative coupling strategy. *Journal of the American Chemical Society*, **2006**, 128, 15558-9

16.4 69