Aaron P Esser-Kahn

List of Publications by Citations

Source: https://exaly.com/author-pdf/7790322/aaron-p-esser-kahn-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

2,611 50 23 73 h-index g-index citations papers 80 3,005 10.9 5.15 avg, IF L-index ext. papers ext. citations

#	Paper	IF	Citations
73	Triggered Release from Polymer Capsules. <i>Macromolecules</i> , 2011 , 44, 5539-5553	5.5	487
72	N-terminal protein modification through a biomimetic transamination reaction. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 5307-11	16.4	301
71	In vivo characterization of the physicochemical properties of polymer-linked TLR agonists that enhance vaccine immunogenicity. <i>Nature Biotechnology</i> , 2015 , 33, 1201-10	44.5	280
70	Three-dimensional microvascular fiber-reinforced composites. <i>Advanced Materials</i> , 2011 , 23, 3654-8	24	178
69	Programmable microcapsules from self-immolative polymers. <i>Journal of the American Chemical Society</i> , 2010 , 132, 10266-8	16.4	172
68	Metallothionein-cross-linked hydrogels for the selective removal of heavy metals from water. Journal of the American Chemical Society, 2008 , 130, 15820-2	16.4	84
67	Incorporation of antifreeze proteins into polymer coatings using site-selective bioconjugation. <i>Journal of the American Chemical Society</i> , 2010 , 132, 13264-9	16.4	77
66	Modification of aniline containing proteins using an oxidative coupling strategy. <i>Journal of the American Chemical Society</i> , 2006 , 128, 15558-9	16.4	69
65	Protein-cross-linked polymeric materials through site-selective bioconjugation. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 3751-4	16.4	68
64	Identification of highly reactive sequences for PLP-mediated bioconjugation using a combinatorial peptide library. <i>Journal of the American Chemical Society</i> , 2010 , 132, 16812-7	16.4	62
63	N-Terminal Protein Modification through a Biomimetic Transamination Reaction. <i>Angewandte Chemie</i> , 2006 , 118, 5433-5437	3.6	62
62	Chemical treatment of poly(lactic acid) fibers to enhance the rate of thermal depolymerization. <i>ACS Applied Materials & Description (Materials & Description of the Company of the Compan</i>	9.5	51
61	Toll-like Receptor Agonist Conjugation: A Chemical Perspective. <i>Bioconjugate Chemistry</i> , 2018 , 29, 587-	6 6 33	50
60	Applications of Immunomodulatory Immune Synergies to Adjuvant Discovery and Vaccine Development. <i>Trends in Biotechnology</i> , 2019 , 37, 373-388	15.1	43
59	Modulation of Innate Immune Responses Covalently Linked TLR Agonists. <i>ACS Central Science</i> , 2015 , 1, 439-448	16.8	42
58	Directing the immune system with chemical compounds. ACS Chemical Biology, 2014, 9, 1075-85	4.9	42
57	Stimulation of innate immune cells by light-activated TLR7/8 agonists. <i>Journal of the American Chemical Society</i> , 2014 , 136, 10823-5	16.4	31

(2020-2018)

56	Ultrasound Promoted Step-Growth Polymerization and Polymer Crosslinking Via Copper Catalyzed Azide-Alkyne "Click" Reaction. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 11208-11212	16.4	30
55	Covalently coupled immunostimulant heterodimers. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 189-92	16.4	27
54	Cancer Cell Lysate Entrapment in CaCO3 Engineered with Polymeric TLR-Agonists: Immune-Modulating Microparticles in View of Personalized Antitumor Vaccination. <i>Chemistry of Materials</i> , 2017 , 29, 4209-4217	9.6	25
53	Linked Toll-Like Receptor Triagonists Stimulate Distinct, Combination-Dependent Innate Immune Responses. <i>ACS Central Science</i> , 2019 , 5, 1137-1145	16.8	24
52	Mechanically Initiated Bulk-Scale Free-Radical Polymerization. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 12023-12026	16.4	24
51	Immunomodulation of the NLRP3 Inflammasome through Structure-Based Activator Design and Functional Regulation via Lysosomal Rupture. <i>ACS Central Science</i> , 2018 , 4, 982-995	16.8	24
50	Photothermal release of CO2 from capture solutions using nanoparticles. <i>Energy and Environmental Science</i> , 2014 , 7, 2603-2607	35.4	18
49	Surface modification of carbon black nanoparticles enhances photothermal separation and release of CO2. <i>Carbon</i> , 2016 , 105, 126-135	10.4	18
48	Controlling the origins of inflammation with a photoactive lipopeptide immunopotentiator. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 5962-5	16.4	17
47	Bio-inspired mechanically adaptive materials through vibration-induced crosslinking. <i>Nature Materials</i> , 2021 , 20, 869-874	27	17
46	Covalent modification of cell surfaces with TLR agonists improves & directs immune stimulation. <i>Chemical Communications</i> , 2013 , 49, 9618-20	5.8	16
45	Immune Response Modulation of Conjugated Agonists with Changing Linker Length. <i>ACS Chemical Biology</i> , 2016 , 11, 3347-3352	4.9	14
44	Mitigation of Hydrophobicity-Induced Immunotoxicity by Sugar Poly(orthoesters). <i>Journal of the American Chemical Society</i> , 2019 , 141, 4510-4514	16.4	14
43	Determination of Factors Influencing the Wet Etching of Polydimethylsiloxane Using Tetra-n-butylammonium Fluoride. <i>Macromolecular Chemistry and Physics</i> , 2016 , 217, 284-291	2.6	13
42	Surface Coating of Nanoparticles Reduces Background Inflammatory Activity while Increasing Particle Uptake and Delivery. <i>ACS Biomaterials Science and Engineering</i> , 2017 , 3, 206-213	5.5	12
41	A microvascular system for chemical reactions using surface waste heat. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 13731-4	16.4	12
40	Tuning Subunit Vaccines with Novel TLR Triagonist Adjuvants to Generate Protective Immune Responses against. <i>Journal of Immunology</i> , 2020 , 204, 611-621	5.3	12
39	Increased vaccine tolerability and protection via NF-B modulation. <i>Science Advances</i> , 2020 , 6,	14.3	12

38	Transiently Thermoresponsive Acetal Polymers for Safe and Effective Administration of Amphotericin B as a Vaccine Adjuvant. <i>Bioconjugate Chemistry</i> , 2018 , 29, 748-760	6.3	12
37	Solvent Effects on the Photothermal Regeneration of CO2 in Monoethanolamine Nanofluids. <i>ACS Applied Materials & District Applied & Distric</i>	9.5	11
36	Light Guided In-vivo Activation of Innate Immune Cells with Photocaged TLR 2/6 Agonist. <i>Scientific Reports</i> , 2017 , 7, 8074	4.9	11
35	The Effect of Membrane Thickness on a Microvascular Gas Exchange Unit. <i>Advanced Functional Materials</i> , 2013 , 23, 100-106	15.6	11
34	Photothermal Nanoparticle Initiation Enables Radical Polymerization and Yields Unique, Uniform Microfibers with Broad Spectrum Light. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 39034-39039	9.5	9
33	Ultrasound Promoted Step-Growth Polymerization and Polymer Crosslinking Via Copper Catalyzed AzideAlkyne ClickReaction. <i>Angewandte Chemie</i> , 2018 , 130, 11378-11382	3.6	9
32	Cooperative CO Absorption Isotherms from a Bifunctional Guanidine and Bifunctional Alcohol. <i>ACS Central Science</i> , 2017 , 3, 1271-1275	16.8	9
31	Mechanically Initiated Bulk-Scale Free-Radical Polymerization. <i>Angewandte Chemie</i> , 2019 , 131, 12151-1	23.564	8
30	A Light-Controlled TLR4 Agonist and Selectable Activation of Cell Subpopulations. <i>ChemBioChem</i> , 2015 , 16, 1744-8	3.8	8
29	100th Anniversary of Macromolecular Science Viewpoint: Piezoelectrically Mediated Mechanochemical Reactions for Adaptive Materials. <i>ACS Macro Letters</i> , 2020 , 9, 1237-1248	6.6	8
28	A Photoactivatable Innate Immune Receptor for Optogenetic Inflammation. <i>ACS Chemical Biology</i> , 2017 , 12, 347-350	4.9	7
27	Bio-Inspired Morphogenesis Using Microvascular Networks and Reaction Diffusion. <i>Chemistry of Materials</i> , 2015 , 27, 4871-4876	9.6	7
26	Controlling the Origins of Inflammation with a Photoactive Lipopeptide Immunopotentiator. <i>Angewandte Chemie</i> , 2015 , 127, 6060-6063	3.6	6
25	Bio-inspired counter-current multiplier for enrichment of solutes. <i>Nature Communications</i> , 2018 , 9, 736	17.4	6
24	Small Molecule NF- B Inhibitors as Immune Potentiators for Enhancement of Vaccine Adjuvants. <i>Frontiers in Immunology</i> , 2020 , 11, 511513	8.4	6
23	Covalently Coupled Immunostimulant Heterodimers. <i>Angewandte Chemie</i> , 2014 , 126, 193-196	3.6	5
22	Process of making three-dimensional microstructures using vaporization of a sacrificial component. Journal of Visualized Experiments, 2013 , e50459	1.6	5
21	From Glucose to Polymers: A Continuous Chemoenzymatic Process. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 18943-18947	16.4	5

20	Subunit Vaccines Using TLR Triagonist Combination Adjuvants Provide Protection Against While Minimizing Reactogenic Responses. <i>Frontiers in Immunology</i> , 2021 , 12, 653092	8.4	5
19	and Analyses of the Effects of Source, Length, and Charge on the Cytotoxicity and Immunocompatibility of Cellulose Nanocrystals. <i>ACS Biomaterials Science and Engineering</i> , 2021 , 7, 1450	0-5:461	5
18	Controllable Frontal Polymerization and Spontaneous Patterning Enabled by Phase-Changing Particles. <i>Small</i> , 2021 , 17, e2102217	11	4
17	Photon upconversion for the enhancement of microfluidic photochemical synthesis <i>RSC Advances</i> , 2019 , 9, 26172-26175	3.7	3
16	Bio-inspired microvascular exchangers employing circular packing Bynthetic rete mirabile. <i>Materials Horizons</i> , 2014 , 1, 602-607	14.4	3
15	A Microvascular System for Chemical Reactions Using Surface Waste Heat. <i>Angewandte Chemie</i> , 2013 , 125, 13976-13979	3.6	2
14	From Glucose to Polymers: A Continuous Chemoenzymatic Process. <i>Angewandte Chemie</i> , 2020 , 132, 19	1956-19	91 <u>0</u> 9
13	Pathogen-like Nanoassemblies of Covalently Linked TLR Agonists Enhance CD8 and NK Cell-Mediated Antitumor Immunity. <i>ACS Central Science</i> , 2020 , 6, 2071-2078	16.8	2
12	Mechanically Promoted Synthesis of Polymer Organogels via Disulfide Bond Cross-Linking <i>ACS Macro Letters</i> , 2021 , 10, 799-804	6.6	2
11	Receptor-Ligand Kinetics Influence the Mechanism of Action of Covalently Linked TLR Ligands. <i>ACS Chemical Biology</i> , 2021 , 16, 380-388	4.9	2
10	Manipulating Frontal Polymerization and Instabilities with Phase-Changing Microparticles. <i>Journal of Physical Chemistry B</i> , 2021 , 125, 7537-7545	3.4	2
9	Determining Whether Agonist Density or Agonist Number Is More Important for Immune Activation via Micoparticle Based Assay. <i>Frontiers in Immunology</i> , 2020 , 11, 642	8.4	1
8	Hybrid Materials: Three-Dimensional Microvascular Fiber-Reinforced Composites (Adv. Mater. 32/2011). <i>Advanced Materials</i> , 2011 , 23, 3653-3653	24	1
7	Site-specific antigen-adjuvant conjugation using cell-free protein synthesis enhances antigen presentation and CD8 T-cell response. <i>Scientific Reports</i> , 2021 , 11, 6267	4.9	1
6	Demonstration of the photothermal catalysis of the Sabatier reaction using nickel nanoparticles and solar spectrum light <i>RSC Advances</i> , 2021 , 11, 8394-8397	3.7	1
5	Correlating the structure and reactivity of a contact allergen, DNCB, and its analogs to sensitization potential. <i>Bioorganic and Medicinal Chemistry</i> , 2019 , 27, 2985-2990	3.4	Ο
4	A synthetic pathogen mimetic molecule induces a highly amplified synergistic immune response activation of multiple signaling pathways. <i>Chemical Science</i> , 2021 , 12, 6646-6651	9.4	О
3	Robust tolerogenic dendritic cells via push/pull pairing of toll-like-receptor agonists and immunomodulators reduces EAE. <i>Biomaterials</i> , 2022 , 121571	15.6	О

Structural Remodeling of Polymeric Material via Diffusion Controlled Polymerization and Chain Scission. *Chemistry of Materials*, **2018**, 30, 8126-8133

9.6

Improving the Adjuvanticity of Small Molecule Immune Potentiators Using Covalently Linked NF-B Modulators. ACS Medicinal Chemistry Letters, 2021, 12, 1441-1448

4.3