
Quanchao Zeng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7789827/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plant and soil elemental C:N:P ratios are linked to soil microbial diversity during grassland restoration on the Loess Plateau, China. Science of the Total Environment, 2022, 806, 150557.	8.0	22
2	Suppressed phosphorus-mineralizing bacteria after three decades of fertilization. Agriculture, Ecosystems and Environment, 2022, 323, 107679.	5.3	15
3	Disentangling drivers of soil microbial nutrient limitation in intensive agricultural and natural ecosystems. Science of the Total Environment, 2022, 806, 150555.	8.0	13
4	Intensive citrus plantations suppress the microbial profiles of the β-glucosidase gene. Agriculture, Ecosystems and Environment, 2022, 323, 107687.	5.3	9
5	Increasing contribution of microbial residues to soil organic carbon in grassland restoration chronosequence. Soil Biology and Biochemistry, 2022, 170, 108688.	8.8	62
6	Response of cbbL-harboring microorganisms to precipitation changes in a naturally-restored grassland. Science of the Total Environment, 2022, 838, 156191.	8.0	4
7	Metabolic pathways of CO2 fixing microorganisms determined C-fixation rates in grassland soils along the precipitation gradient. Soil Biology and Biochemistry, 2022, 172, 108764.	8.8	18
8	Changes in the soil microbial communities of different soil aggregations after vegetation restoration in a semiarid grassland, China. Soil Ecology Letters, 2021, 3, 6-21.	4.5	7
9	Decoupled diversity patterns in microbial geographic distributions on the arid area (the Loess) Tj ETQq1 1 0.7	84314 rgBT 5.0	/Overlock 10
10	Response of soil fungal community composition and functions on the alteration of precipitation in the grassland of Loess Plateau. Science of the Total Environment, 2021, 751, 142273.	8.0	29
11	Effects of forest floor characteristics on soil labile carbon as varied by topography and vegetation type in the Chinese Loess Plateau. Catena, 2021, 196, 104825.	5.0	26
12	Identifying the Biogeographic Patterns of Rare and Abundant Bacterial Communities Using Different Primer Sets on the Loess Plateau. Microorganisms, 2021, 9, 139.	3.6	43
13	Nutrients of green and senesced leaves of a Robinia pseudoacacia plantation along a latitudinal gradient on the Loess Plateau, China. Journal of Forestry Research, 2021, 32, 2499-2506.	3.6	2
14	Newly assimilated carbon allocation in grassland communities under different grazing enclosure times. Biology and Fertility of Soils, 2021, 57, 563-574.	4.3	10
15	Cover Cropping Impacts Soil Microbial Communities and Functions in Mango Orchards. Agriculture (Switzerland), 2021, 11, 343.	3.1	8
16	A Novel Index (RI) to Evaluate the Relative Stability of Soils Using Ultrasonic Agitation. Sustainability, 2021, 13, 4229.	3.2	3
17	Short-term effect of manure and straw application on bacterial and fungal community compositions and abundances in an acidic paddy soil. Journal of Soils and Sediments, 2021, 21, 3057-3071.	3.0	13
18	Plant litter quality regulates soil eco-enzymatic stoichiometry and microbial nutrient limitation in a citrus orchard. Plant and Soil, 2021, 466, 179-191.	3.7	19

QUANCHAO ZENG

#	Article	IF	CITATIONS
19	Linkage between soil ectoenzyme stoichiometry ratios and microbial diversity following the conversion of cropland into grassland. Agriculture, Ecosystems and Environment, 2021, 314, 107418.	5.3	30
20	Root derived C rather than root biomass contributes to the soil organic carbon sequestration in grassland soils with different fencing years. Plant and Soil, 2021, 469, 161-172.	3.7	4
21	Evaluating aggregate stability of soils under different plant species in Ziwuling Mountain area using three renowned methods. Catena, 2021, 207, 105616.	5.0	13
22	Belowground allocation and fate of tree assimilates in plant–soil–microorganisms system: 13C labeling and tracing under field conditions. Geoderma, 2021, 404, 115296.	5.1	9
23	Heavy Metal Contents and Assessment of Soil Contamination in Different Land-Use Types in the Qaidam Basin. Sustainability, 2021, 13, 12020.	3.2	20
24	Soil Rehabilitation Promotes Resilient Microbiome with Enriched Keystone Taxa than Agricultural Infestation in Barren Soils on the Loess Plateau. Biology, 2021, 10, 1261.	2.8	4
25	Response and driving factors of soil microbial diversity related to global nitrogen addition. Land Degradation and Development, 2020, 31, 190-204.	3.9	60
26	Passive and active ecological restoration strategies for abandoned farmland leads to shifts in potential soil nitrogen loss by denitrification and soil denitrifying microbes. Land Degradation and Development, 2020, 31, 1086-1098.	3.9	20
27	Plant and soil traits driving soil fungal community due to tree plantation on the Loess Plateau. Science of the Total Environment, 2020, 708, 134560.	8.0	33
28	Effects of different vegetation restoration measures on soil aggregate stability and erodibility on the Loess Plateau, China. Catena, 2020, 185, 104294.	5.0	88
29	Climate and soil properties regulate soil fungal communities on the Loess Plateau. Pedobiologia, 2020, 81-82, 150668.	1.2	16
30	How C:N:P stoichiometry in soils and plants responds to succession in Robinia pseudoacacia forests on the Loess Plateau, China. Forest Ecology and Management, 2020, 475, 118394.	3.2	35
31	The distribution of soil microbial parameters based on aggregate fractions in successional grassland restoration ecosystems on the Loess Plateau. SN Applied Sciences, 2020, 2, 1.	2.9	1
32	Root cellulose drives soil fulvic acid carbon sequestration in the grassland restoration process. Catena, 2020, 191, 104575.	5.0	21
33	Comparison of soil microbial community between planted woodland and natural grass vegetation on the Loess Plateau. Forest Ecology and Management, 2020, 460, 117817.	3.2	31
34	Using soil aggregate stability and erodibility to evaluate the sustainability of large-scale afforestation of Robinia pseudoacacia and Caragana korshinskii in the Loess Plateau. Forest Ecology and Management, 2019, 450, 117491.	3.2	33
35	Response of forest species to C:N:P in the plant-litter-soil system and stoichiometric homeostasis of plant tissues during afforestation on the Loess Plateau, China. Catena, 2019, 183, 104186.	5.0	66
36	The local environment regulates biogeographic patterns of soil fungal communities on the Loess Plateau. Catena, 2019, 183, 104220.	5.0	28

QUANCHAO ZENG

#	Article	IF	CITATIONS
37	Plant functional diversity drives carbon storage following vegetation restoration in Loess Plateau, China. Journal of Environmental Management, 2019, 246, 668-678.	7.8	19
38	Fast bacterial succession associated with the decomposition of Quercus wutaishanica litter on the Loess Plateau. Biogeochemistry, 2019, 144, 119-131.	3.5	17
39	Biogeography and the driving factors affecting forest soil bacteria in an arid area. Science of the Total Environment, 2019, 680, 124-131.	8.0	62
40	Above-Ground Biomass Models of Caragana korshinskii and Sophora viciifolia in the Loess Plateau, China. Sustainability, 2019, 11, 1674.	3.2	5
41	Geographic distance and soil microbial biomass carbon drive biogeographical distribution of fungal communities in Chinese Loess Plateau soils. Science of the Total Environment, 2019, 660, 1058-1069.	8.0	36
42	Ecological stoichiometry in leaves, roots, litters and soil among different plant communities in a desertified region of Northern China. Catena, 2018, 166, 328-338.	5.0	138
43	The restoration age of Robinia pseudoacacia plantation impacts soil microbial biomass and microbial community structure in the Loess Plateau. Catena, 2018, 165, 192-200.	5.0	56
44	Testing association between soil bacterial diversity and soil carbon storage on the Loess Plateau. Science of the Total Environment, 2018, 626, 48-58.	8.0	53
45	Abiotic and biotic factors modulate plant biomass and root/shoot (R/S) ratios in grassland on the Loess Plateau, China. Science of the Total Environment, 2018, 636, 621-631.	8.0	28
46	Soil enzyme activities and microbial biomass response to crop types on the terraces of the Loess Plateau, China. Journal of Soils and Sediments, 2018, 18, 1971-1980.	3.0	28
47	Soil physicochemical and microbial characteristics of contrasting land-use types along soil depth gradients. Catena, 2018, 162, 345-353.	5.0	67
48	Changes in Soil Organic Carbon and Total Nitrogen at a Small Watershed Scale as the Result of Land Use Conversion on the Loess Plateau. Sustainability, 2018, 10, 4757.	3.2	26
49	Characteristics of soil enzyme activities and microbial biomass carbon and nitrogen under different vegetation zones on the Loess Plateau, China. Arid Land Research and Management, 2018, 32, 438-454.	1.6	10
50	The Biogeographical Distribution of Soil Bacterial Communities in the Loess Plateau as Revealed by High-Throughput Sequencing. Frontiers in Microbiology, 2018, 9, 2456.	3.5	35
51	Soil aggregate stability under different rain conditions for three vegetation types on the Loess Plateau (China). Catena, 2018, 167, 276-283.	5.0	74
52	Changes of Soil Microbiological Properties during Grass Litter Decomposition in Loess Hilly Region, China. International Journal of Environmental Research and Public Health, 2018, 15, 1797.	2.6	7
53	Dynamics of soil nitrogen fractions and their relationship with soil microbial communities in two forest species of northern China. PLoS ONE, 2018, 13, e0196567.	2.5	12
54	Spatial pattern and heterogeneity of soil moisture along a transect in a small catchment on the Loess Plateau. Journal of Hydrology, 2017, 550, 466-477.	5.4	34

QUANCHAO ZENG

#	Article	IF	CITATIONS
55	Impact of vegetation restoration on plants and soil C:N:P stoichiometry on the Yunwu Mountain Reserve of China. Ecological Engineering, 2017, 109, 92-100.	3.6	45
56	Soil bacterial community response to vegetation succession after fencing in the grassland of China. Science of the Total Environment, 2017, 609, 2-10.	8.0	143
57	Environmental driving factors affecting plant biomass in natural grassland in the Loess Plateau, China. Ecological Indicators, 2017, 82, 250-259.	6.3	30
58	How Fencing Affects the Soil Quality and Plant Biomass in the Grassland of the Loess Plateau. International Journal of Environmental Research and Public Health, 2017, 14, 1117.	2.6	13
59	Links between Soil Fungal Diversity and Plant and Soil Properties on the Loess Plateau. Frontiers in Microbiology, 2017, 8, 2198.	3.5	94
60	Soil, Leaf and Root Ecological Stoichiometry of Caragana korshinskii on the Loess Plateau of China in Relation to Plantation Age. PLoS ONE, 2017, 12, e0168890.	2.5	43
61	Impact of litter quantity on the soil bacteria community during the decomposition of <i>Quercus wutaishanica</i> litter. PeerJ, 2017, 5, e3777.	2.0	20
62	Soil and plant components ecological stoichiometry in four steppe communities in the Loess Plateau of China. Catena, 2016, 147, 481-488.	5.0	77
63	Bacterial Community Responses to Soils along a Latitudinal and Vegetation Gradient on the Loess Plateau, China. PLoS ONE, 2016, 11, e0152894.	2.5	86
64	Soil organic carbon sequestration in relation to revegetation on the Loess Plateau, China. Plant and Soil, 2015, 397, 31-42.	3.7	34
65	Effects of slope aspect on soil nitrogen and microbial properties in the Chinese Loess region. Catena, 2015, 125, 135-145.	5.0	117
66	Soil aggregation and intra-aggregate carbon fractions in relation to vegetation succession on the Loess Plateau, China. Catena, 2015, 124, 77-84.	5.0	102
67	Plant functional traits and soil microbial biomass in different vegetation zones on the Loess Plateau. Journal of Plant Interactions, 2014, 9, 889-900.	2.1	17
68	Revegetation as an efficient means of increasing soil aggregate stability on the Loess Plateau (China). Geoderma, 2013, 209-210, 75-85.	5.1	157
69	Soil nitrogen distributions for different land uses and landscape positions in a small watershed on Loess Plateau, China. Ecological Engineering, 2013, 60, 204-213.	3.6	39
70	Effects of Revegetation on Soil Microbial Biomass, Enzyme Activities, and Nutrient Cycling on the Loess Plateau in China. Restoration Ecology, 2013, 21, 600-607.	2.9	38
71	Changes in soil nitrogen and microbial activity during <i>Robinia pseudoacacia</i> recovery period in the Loess Hilly-Gully region. Chinese Journal of Eco-Agriculture, 2012, 20, 322-329.	0.1	2
72	Changes in soil properties across a chronosequence of vegetation restoration on the Loess Plateau of China. Catena, 2011, 86, 110-116.	5.0	165

#	Article	IF	CITATIONS
73	Changes in microbialâ€community structure with depth and time in a chronosequence of restored grassland soils on the Loess Plateau in northwest China. Journal of Plant Nutrition and Soil Science, 2011, 174, 765-774.	1.9	31
74	Soil aggregation, aggregate stability, organic carbon and nitrogen in different soil aggregate fractions under forest and shrub vegetation on the Loess Plateau, China. Catena, 2010, 81, 226-233.	5.0	226
75	Soil microbial parameters and stability of soil aggregate fractions under different grassland communities on the Loess Plateau, China. Biologia (Poland), 2009, 64, 424-427.	1.5	23
76	Evaluation of soil microbial indices along a revegetation chronosequence in grassland soils on the Loess Plateau, Northwest China. Applied Soil Ecology, 2009, 41, 286-292.	4.3	112
77	Soil quality degradation processes along a deforestation chronosequence in the Ziwuling area, China. Catena, 2008, 75, 248-256.	5.0	87
78	Aggregate Characteristics During Natural Revegetation on the Loess Plateau. Pedosphere, 2008, 18, 809-816.	4.0	37