Hongchen Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7789670/publications.pdf Version: 2024-02-01

HONCCHEN LIANC

#	Article	IF	CITATIONS
1	Microbial Diversity in Water and Sediment of Lake Chaka, an Athalassohaline Lake in Northwestern China. Applied and Environmental Microbiology, 2006, 72, 3832-3845.	3.1	379
2	A Comprehensive Census of Microbial Diversity in Hot Springs of Tengchong, Yunnan Province China Using 16S rRNA Gene Pyrosequencing. PLoS ONE, 2013, 8, e53350.	2.5	216
3	Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan plateau. Environmental Microbiology, 2007, 9, 2603-2621.	3.8	210
4	Salinity shapes microbial diversity and community structure in surface sediments of the Qinghai-Tibetan Lakes. Scientific Reports, 2016, 6, 25078.	3.3	161
5	Control of Temperature on Microbial Community Structure in Hot Springs of the Tibetan Plateau. PLoS ONE, 2013, 8, e62901.	2.5	157
6	Microbial dolomite precipitation using sulfate reducing and halophilic bacteria: Results from Qinghai Lake, Tibetan Plateau, NW China. Chemical Geology, 2010, 278, 151-159.	3.3	138
7	Microbial Diversity in Sediments of Saline Qinghai Lake, China: Linking Geochemical Controls to Microbial Ecology. Microbial Ecology, 2006, 51, 65-82.	2.8	133
8	Bacterial and archaeal diversities in <scp>Y</scp> unnan and <scp>T</scp> ibetan hot springs, <scp>C</scp> hina. Environmental Microbiology, 2013, 15, 1160-1175.	3.8	121
9	Insights into ecological role of a new deltaproteobacterial order <i>Candidatus</i> Acidulodesulfobacterales by metagenomics and metatranscriptomics. ISME Journal, 2019, 13, 2044-2057.	9.8	112
10	Endolithic cyanobacteria in soil gypsum: Occurrences in Atacama (Chile), Mojave (United States), and Al-Jafr Basin (Jordan) Deserts. Journal of Geophysical Research, 2007, 112, .	3.3	89
11	A critical review of mineral–microbe interaction and co-evolution: mechanisms and applications. National Science Review, 2022, 9, .	9.5	86
12	Archaeal and bacterial diversity in acidic to circumneutral hot springs in the Philippines. FEMS Microbiology Ecology, 2013, 85, 452-464.	2.7	85
13	RNA-Based Investigation of Ammonia-Oxidizing Archaea in Hot Springs of Yunnan Province, China. Applied and Environmental Microbiology, 2010, 76, 4538-4541.	3.1	81
14	Archaeal and bacterial diversity in hot springs on the Tibetan Plateau, China. Extremophiles, 2011, 15, 549-563.	2.3	80
15	Diversity and Abundance of Ammonia-Oxidizing Archaea and Bacteria in Qinghai Lake, Northwestern China. Geomicrobiology Journal, 2009, 26, 199-211.	2.0	74
16	Distinct Factors Shape Aquatic and Sedimentary Microbial Community Structures in the Lakes of Western China. Frontiers in Microbiology, 2016, 7, 1782.	3.5	74
17	Effect of microbially mediated iron mineral transformation on temporal variation of arsenic in the Pleistocene aquifers of the central Yangtze River basin. Science of the Total Environment, 2018, 619-620, 1247-1258.	8.0	65
18	Potential utilization of terrestrially derived dissolved organic matter by aquatic microbial communities in saline lakes. ISME Journal, 2020, 14, 2313-2324.	9.8	64

#	Article	IF	CITATIONS
19	Microbial Community in High Arsenic Shallow Groundwater Aquifers in Hetao Basin of Inner Mongolia, China. PLoS ONE, 2015, 10, e0125844.	2.5	63
20	Dominance of putative marine benthic <i>Archaea</i> in Qinghai Lake, northâ€western China. Environmental Microbiology, 2008, 10, 2355-2367.	3.8	62
21	Latitudinal Distribution of Ammonia-Oxidizing Bacteria and Archaea in the Agricultural Soils of Eastern China. Applied and Environmental Microbiology, 2014, 80, 5593-5602.	3.1	60
22	Seasonal patterns in microbial communities inhabiting the hot springs of <scp>T</scp> engchong, <scp>Y</scp> unnan Province, <scp>C</scp> hina. Environmental Microbiology, 2014, 16, 1579-1591.	3.8	57
23	Identification of Photosynthetic Plankton Communities Using Sedimentary Ancient DNA and Their Response to late-Holocene Climate Change on the Tibetan Plateau. Scientific Reports, 2014, 4, 6648.	3.3	56
24	A comprehensive census of lake microbial diversity on a global scale. Science China Life Sciences, 2019, 62, 1320-1331.	4.9	56
25	Bacterial Diversity of Freshwater Alpine Lake Puma Yumco on the Tibetan Plateau. Geomicrobiology Journal, 2009, 26, 131-145.	2.0	55
26	Diversity of Culturable Thermophilic Actinobacteria in Hot Springs in Tengchong, China and Studies of their Biosynthetic Gene Profiles. Microbial Ecology, 2016, 72, 150-162.	2.8	55
27	Insight into the function and evolution of the Wood–Ljungdahl pathway in <i>Actinobacteria</i> . ISME Journal, 2021, 15, 3005-3018.	9.8	55
28	Co-occurrence of nitrite-dependent anaerobic methane oxidizing and anaerobic ammonia oxidizing bacteria in two Qinghai-Tibetan saline lakes. Frontiers of Earth Science, 2012, 6, 383-391.	2.1	53
29	Water depth affecting thaumarchaeol production in Lake Qinghai, northeastern Qinghai–Tibetan plateau: Implications for paleo lake levels and paleoclimate. Chemical Geology, 2014, 368, 76-84.	3.3	53
30	Yellowstone Lake: highâ€energy geochemistry and rich bacterial diversity. Environmental Microbiology, 2011, 13, 2172-2185.	3.8	52
31	Sedimentary archaeal amoA gene abundance reflects historic nutrient level and salinity fluctuations in Qinghai Lake, Tibetan Plateau. Scientific Reports, 2016, 5, 18071.	3.3	52
32	Diversity of Crenarchaeota in terrestrial hot springs in Tengchong, China. Extremophiles, 2010, 14, 287-296.	2.3	49
33	Abundance and diversity of aerobic anoxygenic phototrophic bacteria in saline lakes on the Tibetan plateau. FEMS Microbiology Ecology, 2009, 67, 268-278.	2.7	47
34	Microbial diversity in cold seep sediments from the northern South China Sea. Geoscience Frontiers, 2012, 3, 301-316.	8.4	47
35	Magnetic properties of muddy sediments on the northeastern continental shelves of China: Implication for provenance and transportation. Marine Geology, 2010, 274, 107-119.	2.1	46
36	Key rules of life and the fading cryosphere: Impacts in alpine lakes and streams. Global Change Biology, 2020, 26, 6644-6656.	9.5	46

Hongchen Jiang

#	Article	IF	CITATIONS
37	Paenibacillus frigoriresistens sp. nov., a novel psychrotroph isolated from a peat bog in Heilongjiang, Northern China. Antonie Van Leeuwenhoek, 2012, 102, 297-305.	1.7	45
38	Abundant and Rare Microbial Biospheres Respond Differently to Environmental and Spatial Factors in Tibetan Hot Springs. Frontiers in Microbiology, 2018, 9, 2096.	3.5	45
39	Sulfur speciation on the surface of chalcopyrite leached by Acidianus manzaensis. Hydrometallurgy, 2009, 99, 45-50.	4.3	43
40	Deglacial and Holocene Archaeal Lipid-Inferred Paleohydrology and Paleotemperature History of Lake Qinghai, Northeastern Qinghai–Tibetan Plateau. Quaternary Research, 2015, 83, 116-126.	1.7	43
41	Measuring Nitrification, Denitrification, and Related Biomarkers in Terrestrial Geothermal Ecosystems. Methods in Enzymology, 2011, 486, 171-203.	1.0	42
42	Response of Archaeal Community Structure to Environmental Changes in Lakes on the Tibetan Plateau, Northwestern China. Geomicrobiology Journal, 2009, 26, 289-297.	2.0	41
43	Greater temporal changes of sediment microbial community than its waterborne counterpart in Tengchong hot springs, Yunnan Province, China. Scientific Reports, 2014, 4, 7479.	3.3	41
44	Microbial Diversity in the Deep Marine Sediments from the Qiongdongnan Basin in South China Sea. Geomicrobiology Journal, 2007, 24, 505-517.	2.0	38
45	Distribution and Diversity of Cyanobacteria and Eukaryotic Algae in Qinghai–Tibetan Lakes. Geomicrobiology Journal, 2016, 33, 860-869.	2.0	38
46	High beta diversity of bacteria in the shallow terrestrial subsurface. Environmental Microbiology, 2008, 10, 2537-2549.	3.8	36
47	<i>Actinobacterial</i> Diversity in Hot Springs in Tengchong (China), Kamchatka (Russia), and Nevada (USA). Geomicrobiology Journal, 2009, 26, 256-263.	2.0	36
48	A novel efficient β-glucanase from a paddy soil microbial metagenome with versatile activities. Biotechnology for Biofuels, 2016, 9, 36.	6.2	36
49	Planktonic actinobacterial diversity along a salinity gradient of a river and five lakes on the Tibetan Plateau. Extremophiles, 2010, 14, 367-376.	2.3	35
50	Diversity of microbial plankton across the Three Gorges Dam of the Yangtze River, China. Geoscience Frontiers, 2012, 3, 335-349.	8.4	35
51	Microbial Diversity in High Arsenic Groundwater in Hetao Basin of Inner Mongolia, China. Geomicrobiology Journal, 2013, 30, 897-909.	2.0	35
52	Thioarsenate Formation Coupled with Anaerobic Arsenite Oxidation by a Sulfate-Reducing Bacterium Isolated from a Hot Spring. Frontiers in Microbiology, 2017, 8, 1336.	3.5	35
53	Assessing the ratio of archaeol to caldarchaeol as a salinity proxy in highland lakes on the northeastern Qinghai–Tibetan Plateau. Organic Geochemistry, 2013, 54, 69-77.	1.8	34
54	amoA-encoding archaea and thaumarchaeol in the lakes on the northeastern Qinghai-Tibetan Plateau, China. Frontiers in Microbiology, 2013, 4, 329.	3.5	34

#	Article	IF	CITATIONS
55	Seasonal microbial variation accounts for arsenic dynamics in shallow alluvial aquifer systems. Journal of Hazardous Materials, 2019, 367, 109-119.	12.4	34
56	Diversity of Actinobacterial community in saline sediments from Yunnan and Xinjiang, China. Extremophiles, 2009, 13, 623-632.	2.3	32
57	Microbial sulfate reduction facilitates seasonal variation of arsenic concentration in groundwater of Jianghan Plain, Central China. Science of the Total Environment, 2020, 735, 139327.	8.0	32
58	Brockarchaeota, a novel archaeal phylum with unique and versatile carbon cycling pathways. Nature Communications, 2021, 12, 2404.	12.8	32
59	Biomineralization associated with microbial reduction of Fe3+ and oxidation of Fe2+ in solid minerals. American Mineralogist, 2009, 94, 1049-1058.	1.9	30
60	Evaluation of glycerol dialkyl glycerol tetraether proxies for reconstruction of the paleo-environment on the Qinghai-Tibetan Plateau. Organic Geochemistry, 2013, 61, 45-56.	1.8	30
61	Impacts of environmental change and human activity on microbial ecosystems on the Tibetan Plateau, NW China. GSA Today, 2010, , 4-10.	2.0	30
62	Investigation of Elemental Sulfur Speciation Transformation Mediated by Acidithiobacillus ferrooxidans. Current Microbiology, 2009, 58, 300-307.	2.2	29
63	Microbial diversity in the hydrate-containing and -free surface sediments in the Shenhu area, South China Sea. Geoscience Frontiers, 2015, 6, 627-633.	8.4	29
64	Distinguishing ectomycorrhizal and saprophytic fungi using carbon and nitrogen isotopic compositions. Geoscience Frontiers, 2012, 3, 351-356.	8.4	28
65	Effects of Copper Exposure on Expression of Glutathione-Related Genes in Acidithiobacillus ferrooxidans. Current Microbiology, 2011, 62, 1460-1466.	2.2	27
66	Network-directed efficient isolation of previously uncultivated Chloroflexi and related bacteria in hot spring microbial mats. Npj Biofilms and Microbiomes, 2020, 6, 20.	6.4	27
67	Response of Aerobic Anoxygenic Phototrophic Bacterial Diversity to Environment Conditions in Saline Lakes and Daotang River on the Tibetan Plateau, NW China. Geomicrobiology Journal, 2010, 27, 400-408.	2.0	26
68	Temporal Succession of Ancient Phytoplankton Community in Qinghai Lake and Implication for Paleo-environmental Change. Scientific Reports, 2016, 6, 19769.	3.3	25
69	Chemical composition of n-alkanes and microbially mediated n-alkane degradation potential differ in the sediments of Qinghai-Tibetan lakes with different salinity. Chemical Geology, 2019, 524, 37-48.	3.3	25
70	Unique Microbial Community in Drilling Fluids from Chinese Continental Scientific Drilling. Geomicrobiology Journal, 2006, 23, 499-514.	2.0	24
71	The role of clay minerals in the preservation of organic matter in sediments of Qinghai Lake, NW China. Clays and Clay Minerals, 2009, 57, 213-226.	1.3	23
72	Diversity and Abundance of Ammonia-Oxidizing Archaea and Bacteria in Diverse Chinese Paddy Soils. Geomicrobiology Journal, 2014, 31, 12-22.	2.0	23

Hongchen Jiang

#	Article	IF	CITATIONS
73	Benthic Algal Community Structures and Their Response to Geographic Distance and Environmental Variables in the Qinghai-Tibetan Lakes With Different Salinity. Frontiers in Microbiology, 2018, 9, 578.	3.5	23
74	Ammonia-oxidizing Archaea in Kamchatka Hot Springs. Geomicrobiology Journal, 2011, 28, 149-159.	2.0	21
75	Microbial diversity accumulates in a downstream direction in the Three Gorges Reservoir. Journal of Environmental Sciences, 2021, 101, 156-167.	6.1	20
76	Actinobacterial Diversity in the Sediments of Five Cold Springs on the Qinghai-Tibet Plateau. Frontiers in Microbiology, 2015, 6, 1345.	3.5	19
77	Distribution and Diversity of Aerobic Carbon Monoxide-Oxidizing Bacteria in Geothermal Springs of China, the Philippines, and the United States. Geomicrobiology Journal, 2015, 32, 903-913.	2.0	19
78	Gammaproteobacterial Diversity and Carbon Utilization in Response to Salinity in the Lakes on the Qinghai–Tibetan Plateau. Geomicrobiology Journal, 2018, 35, 392-403.	2.0	19
79	Distinct co-occurrence patterns of prokaryotic community between the waters and sediments in lakes with different salinity. FEMS Microbiology Ecology, 2020, 97, .	2.7	19
80	Microbial Responses to Simulated Salinization and Desalinization in the Sediments of the Qinghai–Tibetan Lakes. Frontiers in Microbiology, 2020, 11, 1772.	3.5	19
81	Actinobacterial Diversity in Microbial Mats of Five Hot Springs in Central and Central-Eastern Tibet, China. Geomicrobiology Journal, 2012, 29, 520-527.	2.0	17
82	Diversity of Carbon Monoxide-Oxidizing Bacteria in Five Lakes on the Qinghai-Tibet Plateau, China. Geomicrobiology Journal, 2013, 30, 758-767.	2.0	17
83	Abundance and Diversity of Sulfur-Oxidizing Bacteria along a Salinity Gradient in Four Qinghai-Tibetan Lakes, China. Geomicrobiology Journal, 2013, 30, 851-860.	2.0	17
84	Minerals play key roles in driving prokaryotic and fungal communities in the surface sediments of the Qinghai-Tibetan lakes. FEMS Microbiology Ecology, 2020, 96, .	2.7	16
85	Analysis of the elemental sulfur bio-oxidation by Acidithiobacillus ferrooxidans with sulfur K-edge XANES. World Journal of Microbiology and Biotechnology, 2011, 27, 1927-1931.	3.6	15
86	Correlative surface imaging reveals chemical signatures for bacterial hotspots on plant roots. Analyst, The, 2020, 145, 393-401.	3.5	15
87	Compositional and Metabolic Responses of Autotrophic Microbial Community to Salinity in Lacustrine Environments. MSystems, 2022, 7, .	3.8	15
88	Phylum-Level Archaeal Distributions in the Sediments of Chinese Lakes With a Large Range of Salinity. Geomicrobiology Journal, 2018, 35, 404-410.	2.0	14
89	Microbially mediated mobilization of arsenic from aquifer sediments under bacterial sulfate reduction. Science of the Total Environment, 2021, 768, 144709.	8.0	14
90	Diversity and Biocontrol Potential of Cultivable Endophytic Bacteria Associated with Halophytes from the West Aral Sea Basin. Microorganisms, 2021, 9, 1448.	3.6	14

#	Article	IF	CITATIONS
91	Sulfur Species Investigation in Extra- and Intracellular Sulfur Globules of <i>Acidithiobacillus ferrooxidans</i> and <i>Acidithiobacillus caldus</i> . Geomicrobiology Journal, 2010, 27, 707-713.	2.0	13
92	Genotypic and Phenotypic Characterization of Antimicrobial-Resistant Escherichia coli from Farm-Raised Diarrheic Sika Deer in Northeastern China. PLoS ONE, 2013, 8, e73342.	2.5	13
93	A 12-kyr record of microbial branched and isoprenoid tetraether index in Lake Qinghai, northeastern Qinghai-Tibet Plateau: Implications for paleoclimate reconstruction. Science China Earth Sciences, 2016, 59, 951-960.	5.2	13
94	Reduction of structural Fe(III) in nontronite by thermophilic microbial consortia enriched from hot springs in Tengchong, Yunnan Province, China. Chemical Geology, 2018, 479, 47-57.	3.3	13
95	Taxonomic and Functional Diversity Provides Insight into Microbial Pathways and Stress Responses in the Saline Qinghai Lake, China. PLoS ONE, 2014, 9, e111681.	2.5	12
96	Relative importance of advective flow versus environmental gradient in shaping aquatic ammonium oxidizers near the Three Gorges Dam of the Yangtze River, China. Environmental Microbiology Reports, 2016, 8, 667-674.	2.4	12
97	26Al/10Be Burial Dating of the Middle Pleistocene Yiyuan Hominin Fossil Site, Shandong Province, Northern China. Scientific Reports, 2019, 9, 6961.	3.3	12
98	Casting Light on the Adaptation Mechanisms and Evolutionary History of the Widespread Sumerlaeota. MBio, 2021, 12, .	4.1	12
99	Transcriptome Analysis and Expression Profiling of Molecular Responses to Cd Toxicity in <i>Morchella spongiola</i> . Mycobiology, 2021, 49, 421-433.	1.7	12
100	Molecular composition of dissolved organic matter in saline lakes of the Qing-Tibetan Plateau. Organic Geochemistry, 2022, 167, 104400.	1.8	12
101	Distribution of potentially pathogenic bacteria in the groundwater of the Jianghan Plain, central China. International Biodeterioration and Biodegradation, 2019, 143, 104711.	3.9	11
102	Deciphering Symbiotic Interactions of " <i>Candidatus</i> Aenigmarchaeota―with Inferred Horizontal Gene Transfers and Co-occurrence Networks. MSystems, 2021, 6, e0060621.	3.8	11
103	Flavobacterium terriphilum sp. nov., isolated from soil. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 4276-4281.	1.7	11
104	Soil metabolomics and bacterial functional traits revealed the responses of rhizosphere soil bacterial community to long-term continuous cropping of Tibetan barley. PeerJ, 2022, 10, e13254.	2.0	11
105	Archaeal Lipids and 16S rRNA Genes Characterizing Non-hydrate and Hydrate-Impacted Sediments in the Gulf of Mexico. Geomicrobiology Journal, 2009, 26, 227-237.	2.0	10
106	Microbial diversity in two cold springs on the Qinghai-Tibetan Plateau. Geoscience Frontiers, 2012, 3, 317-325.	8.4	10
107	Abundance and Diversity of Ammonia-Oxidizing Bacteria and Archaea in Cold Springs on the Qinghai-Tibet Plateau. Geomicrobiology Journal, 2013, 30, 530-539.	2.0	10
108	Halomonas xiaochaidanensis sp. nov., isolated from a salt lake sediment. Archives of Microbiology, 2016, 198, 761-766.	2.2	10

#	Article	IF	CITATIONS
109	Paracoccus gahaiensis sp. nov. isolated from sediment of Gahai Lake, Qinghai-Tibetan Plateau, China. Archives of Microbiology, 2016, 198, 227-232.	2.2	10
110	Coupling quinoline degradation with Fe redox in clay minerals: A strategy integrating biological and physicochemical processes. Applied Clay Science, 2020, 188, 105504.	5.2	10
111	Biogeography of Nocardiopsis strains from hypersaline environments of Yunnan and Xinjiang Provinces, western China. Scientific Reports, 2015, 5, 13323.	3.3	9
112	Carbon Fixation by Photosynthetic Mats Along a Temperature Gradient in a Tengchong Hot Spring. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2020JG005719.	3.0	9
113	Novel <i>Sulfolobus</i> Fuselloviruses with Extensive Genomic Variations. Journal of Virology, 2020, 94, .	3.4	9
114	Onshore soil microbes and endophytes respond differently to geochemical and mineralogical changes in the Aral Sea. Science of the Total Environment, 2021, 765, 142675.	8.0	9
115	Lunatibacter salilacus gen. nov., sp. nov., a member of the family Cyclobacteriaceae, isolated from a saline and alkaline lake sediment. International Journal of Systematic and Evolutionary Microbiology, 2021, 71, .	1.7	9
116	Aquiflexum lacus sp. nov., isolated from a lake sediment sample. Archives of Microbiology, 2021, 203, 2911-2917.	2.2	9
117	Cyclobacterium salsum sp. nov. and Cyclobacterium roseum sp. nov., isolated from a saline lake. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 3785-3793.	1.7	9
118	Unconventional microbial mechanisms for the key factors influencing inorganic nitrogen removal in stormwater bioretention columns. Water Research, 2022, 209, 117895.	11.3	9
119	Bicarbonate uptake rates and diversity of RuBisCO genes in saline lake sediments. FEMS Microbiology Ecology, 2021, 97, .	2.7	8
120	Influence of Temperature and Sulfate Concentration on the Sulfate/Sulfite Reduction Prokaryotic Communities in the Tibetan Hot Springs. Microorganisms, 2021, 9, 583.	3.6	8
121	Molecular Determination of Organic Adsorption Sites on Smectite during Fe Redox Processes Using ToF-SIMS Analysis. Environmental Science & Technology, 2021, 55, 7123-7134.	10.0	8
122	Abundance and diversity of candidate division JS1- and Chloroflexi-related bacteria in cold seep sediments of the northern South China Sea. Frontiers of Earth Science, 2012, 6, 373-382.	2.1	7
123	Distribution of Arsenite-Oxidizing Bacteria and its Correlation with Temperature in Hot Springs of the Tibetan-Yunnan Geothermal Zone in Western China. Geomicrobiology Journal, 2015, 32, 482-493.	2.0	7
124	Abundance and diversity of archaeal accA gene in hot springs in Yunnan Province, China. Extremophiles, 2013, 17, 871-879.	2.3	6
125	Editorial: Special thematic issue on inland aquatic ecosystems. FEMS Microbiology Ecology, 2017, 93, .	2.7	6
126	Hydraulic connection affects uranium distribution in the Gas Hure salt lake, Qaidam Basin, China. Environmental Science and Pollution Research, 2018, 25, 4881-4895.	5.3	6

#	Article	IF	CITATIONS
127	Deciphering Linkages Between Microbial Communities and Priming Effects in Lake Sediments With Different Salinity. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005611.	3.0	6
128	Positive Priming Effects Induced by Allochthonous and Autochthonous Organic Matter Input in the Lake Sediments With Different Salinity. Geophysical Research Letters, 2022, 49, .	4.0	6
129	16s rDNA based microbial diversity analysis of eleven acid mine drainages obtained from three Chinese copper mines. Central South University, 2011, 18, 1930-1939.	0.5	5
130	Salinity and DOC Influence the Distribution of Free-living and Particle-attached Aerobic Anoxygenic Phototrophic Bacteria in the Qinghai–Tibetan Lakes. Geomicrobiology Journal, 2018, 35, 247-254.	2.0	5
131	Microbial response to multiple-level addition of grass organic matter in lake sediments with different salinity. FEMS Microbiology Ecology, 2022, 98, .	2.7	5
132	The Response of Potentially Active Planktonic Actinobacteria to the Construction of Three Gorges Dam of the Yangtze River, China. Geomicrobiology Journal, 2012, 29, 114-123.	2.0	4
133	Hyperthermophilic Anaerobic Nitrate-Dependent Fe(II) Oxidization by Tibetan Hot Spring Microbiota and the Formation of Fe Minerals. Geomicrobiology Journal, 2019, 36, 30-41.	2.0	4
134	Distribution of Hydrogen-Producing Bacteria in Tibetan Hot Springs, China. Frontiers in Microbiology, 2021, 12, 569020.	3.5	4
135	Nitrite- and N2O-reducing bacteria respond differently to ecological factors in saline lakes. FEMS Microbiology Ecology, 2022, 98, .	2.7	4
136	The synergy of environmental and microbial variations caused by hydrologic management affects the carbon emission in the Three Gorges Reservoir. Science of the Total Environment, 2022, 821, 153446.	8.0	4
137	A Microbial Analysis Primer for Biogeochemists. , 2018, , 599-609.		3
138	Origin of Boron in the Gas Hure Salt Lake of Northwestern Qaidam Basin, China: Evidence from Hydrochemistry and Boron Isotopes. Acta Geologica Sinica, 2021, 95, 531-540.	1.4	3
139	Synergistic Plant-Microbe Interactions between Endophytic Actinobacteria and Their Role in Plant Growth Promotion and Biological Control of Cotton under Salt Stress. Microorganisms, 2022, 10, 867.	3.6	3
140	Culture-Dependent Study of Microbial Diversity of Lake Chaka. Applied and Environmental Microbiology, 2006, 72, 7427-7427.	3.1	2
141	Surviving onshore soil microbial communities differ among the Qing-Tibetan lakes with different salinity. FEMS Microbiology Ecology, 2019, 95, .	2.7	2
142	The Lifestyle-Dependent Microbial Interactions Vary Between Upstream and Downstream of the Three Gorges Dam. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	2
143	通込₂ç§'å°"æ²ůœ°åŒºåœŸå£¤¾®ç"Ÿç‰©ç¾⋭¼₂结构和功胼²åŠå…¶å¼₂±å"ů›ç´. Diqiu Kexue - Geosciences, 2020, 45, 1071.	Zhongguo Dizh	i Daxue Xue
144	Lake environmental changes in response to acid deposition in Southwest China over the last century: Evidence from sedimentary diatoms in Lake Longtan of the Simian Mountains. Hupo Kexue/Journal of Lake Sciences, 2021, 33, 1940-1950.	0.8	2

#	Article	IF	CITATIONS
145	Quinolone antibiotics enhance denitrifying anaerobic methane oxidation in Wetland sediments: Counterintuitive results. Environmental Pollution, 2022, 305, 119300.	7.5	2
146	Salinity Impact on Composition and Activity of Nitrate-Reducing Fe(II)-Oxidizing Microorganisms in Saline Lakes. Applied and Environmental Microbiology, 2022, , e0013222.	3.1	2
147	The Molecular Mechanism of Yellow Mushroom (Floccularia luteovirens) Response to Strong Ultraviolet Radiation on the Qinghai-Tibet Plateau. Frontiers in Microbiology, 0, 13, .	3.5	2
148	Biogeochemistry and geomicrobiology in extreme environments: Preface. Geoscience Frontiers, 2012, 3, 269-271.	8.4	1
149	Editorial: Thermophilic and Halophilic Extremophiles in Eurasian Environments. Frontiers in Microbiology, 2019, 10, 379.	3.5	1
150	江汉平原浅å±,嫿°´â±,ä,土èʻ—ç¡«é…,ç›è¿~原èŒå⁻¹ç·è¿ç§»é‡Šæ"¾çš"影哕 Diqiu Kexue - Zhongg Geosciences, 2021, 46, 652.	guo Dizhi I 8.5	Daxue Xueba
151	Transcriptomic responses of haloalkalitolerant bacterium Egicoccus halophilus EGI 80432T to highly alkaline stress. Extremophiles, 2021, 25, 459-470.	2.3	ο

152 江汉å¹³原é«~ç·åœ°ä,‹æ°′原ä½å¾®ç"Ÿç‰©çš"é"è¿~原åŠå…¶å⁻¹ç·é‡Šæ"¾çš"å½±å"• Diqiu Kexue - Zhongguo Dizhi Daxue Xu Geosciences, 2017, 42, 716.