Tao Lyu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/77894/publications.pdf Version: 2024-02-01

ΤΛΟΙΥμ

#	Article	IF	CITATIONS
1	Treatment of anaerobic digested effluent in biochar-packed vertical flow constructed wetland columns: Role of media and tidal operation. Science of the Total Environment, 2017, 592, 197-205.	3.9	174
2	Phosphate recovery from liquid fraction of anaerobic digestate using four slow pyrolyzed biochars: Dynamics of adsorption, desorption and regeneration. Journal of Environmental Management, 2017, 201, 260-267.	3.8	108
3	Towards high-quality biodiesel production from microalgae using original and anaerobically-digested livestock wastewater. Chemosphere, 2021, 273, 128578.	4.2	88
4	Functionality of microbial communities in constructed wetlands used for pesticide remediation: Influence of system design and sampling strategy. Water Research, 2017, 110, 241-251.	5.3	82
5	Removal of the pesticides imazalil and tebuconazole in saturated constructed wetland mesocosms. Water Research, 2016, 91, 126-136.	5.3	70
6	Rethinking Intensification of Constructed Wetlands as a Green Eco-Technology for Wastewater Treatment. Environmental Science & amp; Technology, 2018, 52, 1693-1694.	4.6	69
7	Combating hypoxia/anoxia at sediment-water interfaces: A preliminary study of oxygen nanobubble modified clay materials. Science of the Total Environment, 2018, 637-638, 550-560.	3.9	69
8	Phytoremediation of imazalil and tebuconazole by four emergent wetland plant species in hydroponic medium. Chemosphere, 2016, 148, 459-466.	4.2	68
9	Nanobubble Technology in Environmental Engineering: Revolutionization Potential and Challenges. Environmental Science & Technology, 2019, 53, 7175-7176.	4.6	67
10	Effects of constructed wetland design on ibuprofen removal – A mesocosm scale study. Science of the Total Environment, 2017, 609, 38-45.	3.9	64
11	Removal of the pharmaceuticals ibuprofen and iohexol by four wetland plant species in hydroponic culture: plant uptake and microbial degradation. Environmental Science and Pollution Research, 2016, 23, 2890-2898.	2.7	62
12	Removal of the pesticide tebuconazole in constructed wetlands: Design comparison, influencing factors and modelling. Environmental Pollution, 2018, 233, 71-80.	3.7	62
13	Mitigating antibiotic pollution using cyanobacteria: Removal efficiency, pathways and metabolism. Water Research, 2021, 190, 116735.	5.3	62
14	Cultivation of microalgae in adjusted wastewater to enhance biofuel production and reduce environmental impact: Pyrolysis performances and life cycle assessment. Journal of Cleaner Production, 2022, 355, 131768.	4.6	61
15	Valorisation of microalgae residues after lipid extraction: Pyrolysis characteristics for biofuel production. Biochemical Engineering Journal, 2022, 179, 108330.	1.8	60
16	Enantioselective uptake, translocation and degradation of the chiral pesticides tebuconazole and imazalil by Phragmites australis. Environmental Pollution, 2017, 229, 362-370.	3.7	59
17	Treatment of anaerobic digestate supernatant in microbial fuel cell coupled constructed wetlands: Evaluation of nitrogen removal, electricity generation, and bacterial community response. Science of the Total Environment, 2017, 580, 339-346.	3.9	58
18	Ibuprofen and iohexol removal in saturated constructed wetland mesocosms. Ecological Engineering, 2017, 98, 394-402.	1.6	48

TAO LYU

#	Article	IF	CITATIONS
19	Impacts of design configuration and plants on the functionality of the microbial community of mesocosm-scale constructed wetlands treating ibuprofen. Water Research, 2018, 131, 228-238.	5.3	48
20	Enhancement of Tomato Plant Growth and Productivity in Organic Farming by Agri-Nanotechnology Using Nanobubble Oxygation. Journal of Agricultural and Food Chemistry, 2019, 67, 10823-10831.	2.4	46
21	Amphoteric starch-based bicomponent modified soil for mitigation of harmful algal blooms (HABs) with broad salinity tolerance: Flocculation, algal regrowth, and ecological safety. Water Research, 2019, 165, 115005.	5.3	46
22	Quantification of Oxygen Nanobubbles in Particulate Matters and Potential Applications in Remediation of Anaerobic Environment. ACS Omega, 2018, 3, 10624-10630.	1.6	45
23	Dynamics of nitrobenzene degradation and interactions with nitrogen transformations in laboratory-scale constructed wetlands. Bioresource Technology, 2013, 133, 529-536.	4.8	37
24	Mechanisms of genuine humic acid evolution and its dynamic interaction with methane production in anaerobic digestion processes. Chemical Engineering Journal, 2021, 408, 127322.	6.6	37
25	Bactericidal efficiency and photochemical mechanisms of micro/nano bubble–enhanced visible light photocatalytic water disinfection. Water Research, 2021, 203, 117531.	5.3	37
26	Liquid digestate recycled utilization in anaerobic digestion of pig manure: Effect on methane production, system stability and heavy metal mobilization. Energy, 2017, 141, 1695-1704.	4.5	36
27	Dynamic evolution of humic acids during anaerobic digestion: Exploring an effective auxiliary agent for heavy metal remediation. Bioresource Technology, 2021, 320, 124331.	4.8	34
28	Hydrothermal carbonization of microalgae for phosphorus recycling from wastewater to crop-soil systems as slow-release fertilizers. Journal of Cleaner Production, 2021, 283, 124627.	4.6	33
29	Microbial community metabolic function in constructed wetland mesocosms treating the pesticides imazalil and tebuconazole. Ecological Engineering, 2017, 98, 378-387.	1.6	32
30	The intensified constructed wetlands are promising for treatment of ammonia stripped effluent: Nitrogen transformations and removal pathways. Environmental Pollution, 2018, 236, 273-282.	3.7	32
31	New insights into the effects of support matrix on the removal of organic micro-pollutants and the microbial community in constructed wetlands. Environmental Pollution, 2018, 240, 699-708.	3.7	31
32	An integrated approach using ozone nanobubble and cyclodextrin inclusion complexation to enhance the removal of micropollutants. Water Research, 2021, 196, 117039.	5.3	29
33	Molecular-level investigations of effective biogenic phosphorus adsorption by a lanthanum/aluminum-hydroxide composite. Science of the Total Environment, 2020, 725, 138424.	3.9	28
34	Sustainable Chromium (VI) Removal from Contaminated Groundwater Using Nano-Magnetite-Modified Biochar via Rapid Microwave Synthesis. Molecules, 2021, 26, 103.	1.7	28
35	Revealing the link between evolution of electron transfer capacity of humic acid and key enzyme activities during anaerobic digestion. Journal of Environmental Management, 2022, 301, 113914.	3.8	27
36	Superior arsenate adsorption and comprehensive investigation of adsorption mechanism on novel Mn-doped La2O2CO3 composites. Chemical Engineering Journal, 2020, 391, 123623.	6.6	26

ΤΑΟ LYU

#	Article	IF	CITATIONS
37	Exploring a multifunctional geoengineering material for eutrophication remediation: Simultaneously control internal nutrient load and tackle hypoxia. Chemical Engineering Journal, 2021, 406, 127206.	6.6	26
38	Modified Local Soil (MLS) Technology for Harmful Algal Bloom Control, Sediment Remediation, and Ecological Restoration. Water (Switzerland), 2019, 11, 1123.	1.2	24
39	Aquatic Macrophytes in Morphological and Physiological Responses to the Nanobubble Technology Application for Water Restoration. ACS ES&T Water, 2021, 1, 376-387.	2.3	24
40	Microbial community metabolic profiles in saturated constructed wetlands treating iohexol and ibuprofen. Science of the Total Environment, 2019, 651, 1926-1934.	3.9	23
41	Comment: Closing phosphorus cycle from natural waters: re-capturing phosphorus through an integrated water-energy-food strategy. Journal of Environmental Sciences, 2018, 65, 375-376.	3.2	22
42	Effect of flocculation pre-treatment on membrane nutrient recovery of digested chicken slurry: Mitigating suspended solids and retaining nutrients. Chemical Engineering Journal, 2018, 352, 855-862.	6.6	22
43	Reducing arsenic toxicity using the interfacial oxygen nanobubble technology for sediment remediation. Water Research, 2021, 205, 117657.	5.3	22
44	Removal of organic matter, nitrogen and faecal indicators from diluted anaerobically digested slurry using tidal flow constructed wetlands. Environmental Science and Pollution Research, 2017, 24, 5486-5496.	2.7	21
45	Treatment of Alkaline Stripped Effluent in Aerated Constructed Wetlands: Feasibility Evaluation and Performance Enhancement. Water (Switzerland), 2016, 8, 386.	1.2	20
46	Microbial density and diversity in constructed wetland systems and the relation to pollutant removal efficiency. Water Science and Technology, 2016, 73, 679-686.	1.2	19
47	Synergistic Recapturing of External and Internal Phosphorus for In Situ Eutrophication Mitigation. Water (Switzerland), 2020, 12, 2.	1.2	17
48	Utilization of coal fly ash waste for effective recapture of phosphorus from waters. Chemosphere, 2022, 287, 132431.	4.2	16
49	Effect of multilayer substrate configuration in horizontal subsurface flow constructed wetlands: assessment of treatment performance, biofilm development, and solids accumulation. Environmental Science and Pollution Research, 2018, 25, 1883-1891.	2.7	15
50	Enhancement of cadmium removal by oxygen-doped carbon nitride with molybdenum and sulphur hybridization. Journal of Colloid and Interface Science, 2019, 556, 606-615.	5.0	15
51	Efficient arsenic removal by a bifunctional heterogeneous catalyst through simultaneous hydrogen peroxide (H2O2) catalytic oxidation and adsorption. Journal of Cleaner Production, 2021, 325, 129329.	4.6	15
52	Highly efficient and irreversible removal of cadmium through the formation of a solid solution. Journal of Hazardous Materials, 2020, 384, 121461.	6.5	13
53	Lake and River Restoration: Method, Evaluation and Management. Water (Switzerland), 2020, 12, 977.	1.2	12
54	Campus Sewage Treatment in Multilayer Horizontal Subsurface Flow Constructed Wetlands: Nitrogen Removal and Microbial Community Distribution. Clean - Soil, Air, Water, 2017, 45, 1700254.	0.7	11

Tao Lyu

#	Article	IF	CITATIONS
55	Stabilization of Preliminary Anaerobically Digested Slurry in Post-Storage: Dynamics of Chemical Characteristics and Hygienic Quality. Water, Air, and Soil Pollution, 2017, 228, 1.	1.1	9
56	Nanobubble Technology Enhanced Ozonation Process for Ammonia Removal. Water (Switzerland), 2022, 14, 1865.	1.2	8
57	Multilayer Substrate Configuration Enhances Removal Efficiency of Pollutants in Constructed Wetlands. Water (Switzerland), 2016, 8, 556.	1.2	7
58	Switching Harmful Algal Blooms to Submerged Macrophytes in Shallow Waters Using Geo-engineering Methods: Evidence from a ¹⁵ N Tracing Study. Environmental Science & Technology, 2018, 52, 11778-11785.	4.6	7
59	Optimisation of bioscrubber systems to simultaneously remove methane and purify wastewater from intensive pig farms. Environmental Science and Pollution Research, 2019, 26, 15847-15856.	2.7	5
60	Effect of Nitrate on Sulphur Transformations Depending on Carbon Load in Laboratory-Scale Wetlands Treating Artificial Sewage. Advanced Materials Research, 2012, 518-523, 1902-1912.	0.3	4
61	Effects of Fe2+ on the Anaerobic Digestion of Chicken Manure: A Batch Study. , 2012, , .		4
62	Design and performance evaluation of a highly loaded aerated treatment wetland managing effluents from a food processing industry in Denmark. Water Practice and Technology, 2015, 10, 644-651.	1.0	4
63	Performance of Lab-Scale Tidal Flow Constructed Wetlands Treating Livestock Wastewater. Advanced Materials Research, 2012, 518-523, 2631-2639.	0.3	1
64	Methodologies for the analysis of pesticides and pharmaceuticals in sediments and plant tissue. Analytical Methods, 2018, 10, 3791-3803.	1.3	1
65	Comparative Laboratory-Scale Study of Resorcinol and Nitrogen Removal in Different Treatment Wetlands. Advanced Materials Research, 0, 726-731, 1643-1653.	0.3	0
66	Comment on "A Pilot-Scale Field Study: In Situ Treatment of PCB-Impacted Sediments with Bioamended Activated Carbon― Environmental Science & Technology, 2019, 53, 6103-6103.	4.6	0