Mandess Mendes, Weindes, WS;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7789340/publications.pdf

Version: 2024-02-01

643344 591227 37 769 15 27 citations h-index g-index papers 38 38 38 586 docs citations citing authors all docs times ranked

#	Article	IF	Citations
1	A remote sensing framework to map potential toxic elements in agricultural soils in the humid tropics. Environmental Pollution, 2022, 292, 118397.	3.7	4
2	Free iron oxide content in tropical soils predicted by integrative digital mapping. Soil and Tillage Research, 2022, 219, 105346.	2.6	5
3	The Brazilian soil Mid-infrared Spectral Library: The Power of the Fundamental Range. Geoderma, 2022, 415, 115776.	2.3	11
4	Near-infrared spectroscopy for prediction of potentially toxic elements in soil and sediments from a semiarid and coastal humid tropical transitional river basin. Microchemical Journal, 2022, 179, 107544.	2.3	3
5	Peatlands spectral data influence in global spectral modelling of soil organic carbon and total nitrogen using visible-near-infrared spectroscopy. Journal of Environmental Management, 2022, 317, 115383.	3.8	5
6	Digital soil mapping outputs on soil classification and sugarcane production in Brazil. Journal of South American Earth Sciences, 2022, 116, 103881.	0.6	4
7	Soil variability and quantification based on Sentinel-2 and Landsat-8 bare soil images: A comparison. Remote Sensing of Environment, 2021, 252, 112117.	4.6	60
8	Expert-based maps and highly detailed surface drainage models to support digital soil mapping. Geoderma, 2021, 384, 114779.	2.3	7
9	Integration of multispectral and hyperspectral data to map magnetic susceptibility and soil attributes at depth: A novel framework. Geoderma, 2021, 385, 114885.	2.3	9
10	Soil degradation index developed by multitemporal remote sensing images, climate variables, terrain and soil atributes. Journal of Environmental Management, 2021, 277, 111316.	3.8	35
11	A novel framework to estimate soil mineralogy using soil spectroscopy. Applied Geochemistry, 2021, 127, 104909.	1.4	15
12	Drivers of Organic Carbon Stocks in Different LULC History and along Soil Depth for a 30 Years Image Time Series. Remote Sensing, 2021, 13, 2223.	1.8	22
13	Leveraging the application of Earth observation data for mapping cropland soils in Brazil. Geoderma, 2021, 396, 115042.	2.3	12
14	Soil parent material prediction through satellite multispectral analysis on a regional scale at the Western Paulista Plateau, Brazil. Geoderma Regional, 2021, 26, e00412.	0.9	7
15	Soil property maps with satellite images at multiple scales and its impact on management and classification. Geoderma, 2021, 397, 115089.	2.3	26
16	Clay content prediction using spectra data collected from the ground to space platforms in a smallholder tropical area. Geoderma, 2021, 399, 115116.	2.3	14
17	Soil weathering behavior assessed by combined spectral ranges: Insights into aggregate analysis. Geoderma, 2021, 402, 115154.	2.3	5
18	Soil spectral library of PiauÃ-State using machine learning for laboratory analysis in Northeastern Brazil. Revista Brasileira De Ciencia Do Solo, 2021, 45, .	0.5	5

#	Article	IF	CITATIONS
19	Point and Imaging Spectroscopy in Geospatial Analysis of Soils. , 2021, , 277-317.		О
20	Fine-scale soil mapping with Earth Observation data: a multiple geographic level comparison. Revista Brasileira De Ciencia Do Solo, 2021, 45, .	0.5	4
21	Ratio of Clay Spectroscopic Indices and its approach on soil morphometry. Geoderma, 2020, 357, 113963.	2.3	5
22	Multi-temporal bare surface image associated with transfer functions to support soil classification and mapping in southeastern Brazil. Geoderma, 2020, 361, 114018.	2.3	19
23	Emissivity of agricultural soil attributes in southeastern Brazil via terrestrial and satellite sensors. Geoderma, 2020, 361, 114038.	2.3	16
24	Digital mapping of soil parent material in a heterogeneous tropical area. Geomorphology, 2020, 367, 107305.	1.1	27
25	Bare Earth's Surface Spectra as a Proxy for Soil Resource Monitoring. Scientific Reports, 2020, 10, 4461.	1.6	66
26	Land use/land cover changes and bare soil surface temperature monitoring in southeast Brazil. Geoderma Regional, 2020, 22, e00313.	0.9	19
27	Geostatistics or machine learning for mapping soil attributes and agricultural practices. Revista Ceres, 2020, 67, 330-336.	0.1	5
28	The influence of training sample size on the accuracy of deep learning models for the prediction of soil properties with near-infrared spectroscopy data. Soil, 2020, 6, 565-578.	2.2	84
29	The Brazilian Soil Spectral Library (BSSL): A general view, application and challenges. Geoderma, 2019, 354, 113793.	2.3	100
30	Is it possible to map subsurface soil attributes by satellite spectral transfer models?. Geoderma, 2019, 343, 269-279.	2.3	39
31	Soil Physical Attributes Under Eucalyptus stands With Non-living and Living Plants. Journal of Agricultural Science, 2019, 11, 197.	0.1	2
32	Phytosociology and Behavior of Weeds in Maize as Influenced by Spatial Arrangements. Journal of Agricultural Science, 2018, 10, 199.	0.1	1
33	Multi-Temporal Satellite Images on Topsoil Attribute Quantification and the Relationship with Soil Classes and Geology. Remote Sensing, 2018, 10, 1571.	1.8	63
34	Improvement of Clay and Sand Quantification Based on a Novel Approach with a Focus on Multispectral Satellite Images. Remote Sensing, 2018, 10, 1555.	1.8	45
35	Brackish water: an option for producing hydroponic <i>Capsicum annuum</i> in laminar flows of mineral nutrients. Revista Colombiana De Ciencias HortÃcolas, 2018, 12, 147-155.	0.2	5
36	Chemical attributes of agricultural soil after the cultivation of cover crops. Australian Journal of Crop Science, $2017, 11, 1497-1503$.	0.1	6

#	Article	IF	CITATIONS
37	Development and productivity of maize in response to spatial arrangement under semiarid condition of Northeastern Brazil. Australian Journal of Crop Science, 2017, 11, 313-321.	0.1	5