## Mandess Mendes, Mendes, WS;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7789340/publications.pdf

Version: 2024-02-01



Wanderson De S Mendes; Mendes, W S; Wanderson De

| #  | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A remote sensing framework to map potential toxic elements in agricultural soils in the humid tropics. Environmental Pollution, 2022, 292, 118397.                                                               | 7.5  | 4         |
| 2  | Free iron oxide content in tropical soils predicted by integrative digital mapping. Soil and Tillage<br>Research, 2022, 219, 105346.                                                                             | 5.6  | 5         |
| 3  | The Brazilian soil Mid-infrared Spectral Library: The Power of the Fundamental Range. Geoderma, 2022, 415, 115776.                                                                                               | 5.1  | 11        |
| 4  | Near-infrared spectroscopy for prediction of potentially toxic elements in soil and sediments from a semiarid and coastal humid tropical transitional river basin. Microchemical Journal, 2022, 179, 107544.     | 4.5  | 3         |
| 5  | Peatlands spectral data influence in global spectral modelling of soil organic carbon and total<br>nitrogen using visible-near-infrared spectroscopy. Journal of Environmental Management, 2022, 317,<br>115383. | 7.8  | 5         |
| 6  | Digital soil mapping outputs on soil classification and sugarcane production in Brazil. Journal of<br>South American Earth Sciences, 2022, 116, 103881.                                                          | 1.4  | 4         |
| 7  | Soil variability and quantification based on Sentinel-2 and Landsat-8 bare soil images: A comparison.<br>Remote Sensing of Environment, 2021, 252, 112117.                                                       | 11.0 | 60        |
| 8  | Expert-based maps and highly detailed surface drainage models to support digital soil mapping.<br>Geoderma, 2021, 384, 114779.                                                                                   | 5.1  | 7         |
| 9  | Integration of multispectral and hyperspectral data to map magnetic susceptibility and soil attributes<br>at depth: A novel framework. Geoderma, 2021, 385, 114885.                                              | 5.1  | 9         |
| 10 | Soil degradation index developed by multitemporal remote sensing images, climate variables, terrain<br>and soil atributes. Journal of Environmental Management, 2021, 277, 111316.                               | 7.8  | 35        |
| 11 | A novel framework to estimate soil mineralogy using soil spectroscopy. Applied Geochemistry, 2021,<br>127, 104909.                                                                                               | 3.0  | 15        |
| 12 | Drivers of Organic Carbon Stocks in Different LULC History and along Soil Depth for a 30 Years Image<br>Time Series. Remote Sensing, 2021, 13, 2223.                                                             | 4.0  | 22        |
| 13 | Leveraging the application of Earth observation data for mapping cropland soils in Brazil. Geoderma, 2021, 396, 115042.                                                                                          | 5.1  | 12        |
| 14 | Soil parent material prediction through satellite multispectral analysis on a regional scale at the<br>Western Paulista Plateau, Brazil. Geoderma Regional, 2021, 26, e00412.                                    | 2.1  | 7         |
| 15 | Soil property maps with satellite images at multiple scales and its impact on management and classification. Geoderma, 2021, 397, 115089.                                                                        | 5.1  | 26        |
| 16 | Clay content prediction using spectra data collected from the ground to space platforms in a smallholder tropical area. Geoderma, 2021, 399, 115116.                                                             | 5.1  | 14        |
| 17 | Soil weathering behavior assessed by combined spectral ranges: Insights into aggregate analysis.<br>Geoderma, 2021, 402, 115154.                                                                                 | 5.1  | 5         |
| 18 | Soil spectral library of PiauÃ-State using machine learning for laboratory analysis in Northeastern<br>Brazil. Revista Brasileira De Ciencia Do Solo, 2021, 45, .                                                | 1.3  | 5         |

WANDERSON DE S MENDES;

| #  | Article                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Point and Imaging Spectroscopy in Geospatial Analysis of Soils. , 2021, , 277-317.                                                                                                |     | Ο         |
| 20 | Fine-scale soil mapping with Earth Observation data: a multiple geographic level comparison. Revista<br>Brasileira De Ciencia Do Solo, 2021, 45, .                                | 1.3 | 4         |
| 21 | Ratio of Clay Spectroscopic Indices and its approach on soil morphometry. Geoderma, 2020, 357, 113963.                                                                            | 5.1 | 5         |
| 22 | Multi-temporal bare surface image associated with transfer functions to support soil classification and mapping in southeastern Brazil. Geoderma, 2020, 361, 114018.              | 5.1 | 19        |
| 23 | Emissivity of agricultural soil attributes in southeastern Brazil via terrestrial and satellite sensors.<br>Geoderma, 2020, 361, 114038.                                          | 5.1 | 16        |
| 24 | Digital mapping of soil parent material in a heterogeneous tropical area. Geomorphology, 2020, 367, 107305.                                                                       | 2.6 | 27        |
| 25 | Bare Earth's Surface Spectra as a Proxy for Soil Resource Monitoring. Scientific Reports, 2020, 10,<br>4461.                                                                      | 3.3 | 66        |
| 26 | Land use/land cover changes and bare soil surface temperature monitoring in southeast Brazil.<br>Geoderma Regional, 2020, 22, e00313.                                             | 2.1 | 19        |
| 27 | Geostatistics or machine learning for mapping soil attributes and agricultural practices. Revista<br>Ceres, 2020, 67, 330-336.                                                    | 0.4 | 5         |
| 28 | The influence of training sample size on the accuracy of deep learning models for the prediction of soil properties with near-infrared spectroscopy data. Soil, 2020, 6, 565-578. | 4.9 | 84        |
| 29 | The Brazilian Soil Spectral Library (BSSL): A general view, application and challenges. Geoderma, 2019, 354, 113793.                                                              | 5.1 | 100       |
| 30 | ls it possible to map subsurface soil attributes by satellite spectral transfer models?. Geoderma, 2019, 343, 269-279.                                                            | 5.1 | 39        |
| 31 | Soil Physical Attributes Under Eucalyptus stands With Non-living and Living Plants. Journal of<br>Agricultural Science, 2019, 11, 197.                                            | 0.2 | 2         |
| 32 | Phytosociology and Behavior of Weeds in Maize as Influenced by Spatial Arrangements. Journal of<br>Agricultural Science, 2018, 10, 199.                                           | 0.2 | 1         |
| 33 | Multi-Temporal Satellite Images on Topsoil Attribute Quantification and the Relationship with Soil<br>Classes and Geology. Remote Sensing, 2018, 10, 1571.                        | 4.0 | 63        |
| 34 | Improvement of Clay and Sand Quantification Based on a Novel Approach with a Focus on Multispectral Satellite Images. Remote Sensing, 2018, 10, 1555.                             | 4.0 | 45        |
| 35 | Brackish water: an option for producing hydroponic <i>Capsicum annuum</i> in laminar<br>flows of mineral nutrients. Revista Colombiana De Ciencias HortAcolas, 2018, 12, 147-155. | 0.6 | 5         |
| 36 | Chemical attributes of agricultural soil after the cultivation of cover crops. Australian Journal of Crop Science, 2017, 11, 1497-1503.                                           | 0.3 | 6         |

| #  | Article                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Development and productivity of maize in response to spatial arrangement under semiarid condition of Northeastern Brazil. Australian Journal of Crop Science, 2017, 11, 313-321. | 0.3 | 5         |