
Pietro Tonutti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7788917/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiomics approaches for the improvements of postharvest systems. , 2022, , 251-276.		0
2	Changes in volatile organic composition of olive oil extracted from cv. â€~Leccino' fruit subjected to ethylene treatments at different ripening stages. Journal of the Science of Food and Agriculture, 2021, 101, 3981-3986.	3.5	1
3	Potential Mitigation of Smoke Taint in Wines by Post-Harvest Ozone Treatment of Grapes. Molecules, 2021, 26, 1798.	3.8	14
4	Amelioration of Smoke Taint in Cabernet Sauvignon Wine via Post-Harvest Ozonation of Grapes. Beverages, 2021, 7, 44.	2.8	3
5	Ozone treatments to induce systemic-acquired resistance in leaves of potted vines: molecular responses and NIR evaluation for identifying effective dose and exposition duration. Oeno One, 2021, 56, 175-187.	1.4	2
6	The inner temperature of the olives (cv. Leccino) before processing affects the volatile profile and the composition of the oil. Food Research International, 2020, 129, 108861.	6.2	13
7	Primary Metabolism in Fresh Fruits During Storage. Frontiers in Plant Science, 2020, 11, 80.	3.6	103
8	Short-Term Responses of Apple Fruit to Partial Reoxygenation during Extreme Hypoxic Storage Conditions. Journal of Agricultural and Food Chemistry, 2019, 67, 4754-4763.	5.2	11
9	Metabolic Responses to Low Temperature of Three Peach Fruit Cultivars Differently Sensitive to Cold Storage. Frontiers in Plant Science, 2018, 9, 706.	3.6	63
10	A metabolomics approach to elucidate apple fruit responses to static and dynamic controlled atmosphere storage. Postharvest Biology and Technology, 2017, 127, 76-87.	6.0	49
11	Extreme Hypoxic Conditions Induce Selective Molecular Responses and Metabolic Reset in Detached Apple Fruit. Frontiers in Plant Science, 2016, 7, 146.	3.6	48
12	Berry ripening, preâ€processing and thermal treatments affect the phenolic composition and antioxidant capacity of grape (<i>Vitis vinifera</i> ÂL.) juice. Journal of the Science of Food and Agriculture, 2016, 96, 664-671.	3.5	17
13	Cell wall metabolism of peaches and nectarines treated with <scp>UV</scp> â€B radiation: a biochemical and molecular approach. Journal of the Science of Food and Agriculture, 2016, 96, 939-947.	3.5	10
14	Innovative and Integrated Approaches to Investigating Postharvest Stress Physiology and the Biological Basis of Fruit Quality During Storage. , 2014, , 519-541.		1
15	Molecular and biochemical responses to wounding in mesocarp of ripe peach (Prunus persica L.) Tj ETQq1 1 0.7	84314 rgB 6.0	T /Overlock
16	Postharvest treatments with ethylene on Vitis vinifera (cv Sangiovese) grapes affect berry metabolism and wine composition. Food Chemistry, 2014, 159, 257-266.	8.2	23
17	Post-harvest UV-B irradiation induces changes of phenol contents and corresponding biosynthetic gene expression in peaches and nectarines. Food Chemistry, 2014, 163, 51-60.	8.2	75
18	The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nature Genetics, 2013, 45, 487-494.	21.4	1,031

PIETRO TONUTTI

#	Article	IF	CITATIONS
19	Phenol compound metabolism and gene expression in the skin of wine grape (Vitis vinifera L.) berries subjected to partial postharvest dehydration. Postharvest Biology and Technology, 2012, 67, 102-109.	6.0	76
20	Comparative transcript profiling of apricot (Prunus armeniaca L.) fruit development and on-tree ripening. Tree Genetics and Genomes, 2011, 7, 609-616.	1.6	53
21	Short-Term Postharvest Carbon Dioxide Treatments Induce Selective Molecular and Metabolic Changes in Grape Berries. Journal of Agricultural and Food Chemistry, 2010, 58, 8012-8020.	5.2	47
22	Advanced Technologies and Integrated Approaches to Investigate the Molecular Basis of Fresh Produce Quality. , 2009, , 561-582.		1
23	Postharvest water loss induces marked changes in transcript profiling in skins of wine grape berries. Postharvest Biology and Technology, 2009, 52, 247-253.	6.0	75
24	Different postharvest conditions modulate ripening and ethylene biosynthetic and signal transduction pathways in Stony Hard peaches. Postharvest Biology and Technology, 2008, 48, 84-91.	6.0	51
25	Transcriptome profiling of ripening nectarine (Prunus persica L. Batsch) fruit treated with 1-MCP. Journal of Experimental Botany, 2008, 59, 2781-2791.	4.8	101
26	The use of microarray μPEACH1.0 to investigate transcriptome changes during transition from pre-climacteric to climacteric phase in peach fruit. Plant Science, 2006, 170, 606-613.	3.6	159
27	Different expression of Pp-LTP1 and accumulation of Pru p 3 in fruits of two Prunus persica L. Batsch genotypes. Plant Science, 2006, 171, 106-113.	3.6	24
28	The ethylene biosynthetic and signal transduction pathways are differently affected by 1-MCP in apple and peach fruit. Postharvest Biology and Technology, 2006, 42, 125-133.	6.0	137
29	Functional analysis of peach ACC oxidase promoters in transgenic tomato and in ripening peach fruit. Plant Science, 2003, 165, 523-530.	3.6	35
30	Characterization of two putative ethylene receptor genes expressed during peach fruit development and abscission. Journal of Experimental Botany, 2002, 53, 2333-2339.	4.8	149
31	Characterization of a major latex protein (MLP) gene down-regulated by ethylene during peach fruitlet abscission. Plant Science, 2002, 163, 265-272.	3.6	44
32	Differential expression of two lipid transfer protein genes in reproductive organs of peach (Prunus) Tj ETQq0 0 0	rgBT/Ove	rloçk 10 Tf 50
33	Characterization and expression of two members of the peach 1-aminocyclopropane-1-carboxylate oxidase gene family. Physiologia Plantarum, 2001, 111, 336-344.	5.2	96
34	Biochemical and molecular aspects of fruitlet abscission. Plant Growth Regulation, 2000, 31, 35-42.	3.4	44
35	Peach fruit ripening and quality in relation to picking time, and hypoxic and high CO2 short-term postharvest treatments. Postharvest Biology and Technology, 1999, 16, 213-222.	6.0	62

Endo-Î²-1,4-glucanases are involved in peach fruit growth and ripening, and regulated by ethylene.
5.2 73

PIETRO TONUTTI

#	Article	IF	CITATIONS
37	Ethylene biosynthesis in peach fruitlet abscission. Plant, Cell and Environment, 1998, 21, 731-737.	5.7	39
38	Ethylene Evolution and 1-Aminocyclopropane-1-carboxylate Oxidase Gene Expression during Early Development and Ripening of Peach Fruit. Journal of the American Society for Horticultural Science, 1997, 122, 642-647.	1.0	109
39	Fruit firmness and ethylene biosynthesis in three cultivars of peach (<i>Prunus persica</i> L. Batsch). The Journal of Horticultural Science, 1996, 71, 141-147.	0.3	51
40	Cell wall hydrolases and amylase in kiwifruit softening. Postharvest Biology and Technology, 1996, 9, 19-29.	6.0	62
41	The expression of cellulase gene family members during induced avocado fruit abscission and ripening. Plant, Cell and Environment, 1995, 18, 709-713.	5.7	37
42	Scion Inclination in Malus domestica Borkh. and Prunus spp. Influences Root Growth and Distribution. Hortscience: A Publication of the American Society for Hortcultural Science, 1995, 30, 517-520.	1.0	2
43	Oxygen concentration and ethylene production in roots and leaves of wheat: short term reaction in air after anoxic and hypoxic treatments. Physiologia Plantarum, 1991, 81, 295-300.	5.2	1
44	The effect of paclobutrazol on strawberry growth and fruiting. The Journal of Horticultural Science, 1985, 60, 501-506.	0.3	15