Vasily Ptushenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7788088/publications.pdf Version: 2024-02-01

VASILY PTUSHENKO

#	Article	IF	CITATIONS
1	The pushback against state interference in science: how Lysenkoism tried to suppress Genetics and how it was eventually defeated. Genetics, 2021, 219, .	2.9	1
2	The Effect of Chilling on the Photosynthetic Apparatus of Microalga Lobosphaera incisa IPPAS C-2047. Biochemistry (Moscow), 2021, 86, 1590-1598.	1.5	2
3	Electric Cables of Living Cells. I. Energy Transfer along Coupling Membranes. Biochemistry (Moscow), 2020, 85, 820-832.	1.5	3
4	Senescence and entrenchment in evolution of amino acid sites. Nature Communications, 2020, 11, 4603.	12.8	4
5	Electric Cables of Living Cells. II. Bacterial Electron Conductors. Biochemistry (Moscow), 2020, 85, 955-965.	1.5	1
6	Spectrum of Light as a Determinant of Plant Functioning: A Historical Perspective. Life, 2020, 10, 25.	2.4	15
7	Chain Initiation. Herald of the Russian Academy of Sciences, 2019, 89, 84-90.	0.6	1
8	Cationic penetrating antioxidants switch off Mn cluster of photosystem II in situ. Photosynthesis Research, 2019, 142, 229-240.	2.9	2
9	Allele-specific nonstationarity in evolution of influenza A virus surface proteins. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21104-21112.	7.1	10
10	<i>Tradescantia</i> â€based models: a powerful looking glass for investigation of photoacclimation and photoadaptation in plants. Physiologia Plantarum, 2019, 166, 120-133.	5.2	8
11	The unfinished Nobel race of Eugene Zavoisky: to the 75th anniversary of EPR discovery. Science Bulletin, 2019, 64, 146-148.	9.0	1
12	Three phases of energy-dependent induction of \$\${ext{P}}_{{700}}^{+}\$\$ P 700 + and Chl a fluorescence in Tradescantia fluminensis leaves. Photosynthesis Research, 2019, 139, 509-522.	2.9	15
13	Effect of Ca 2+ on the redox potential of heme a in cytochrome c oxidase. Biochimie, 2018, 149, 71-78.	2.6	6
14	Reorganization energies of the electron transfer reactions involving quinones in the reaction center of Rhodobacter sphaeroides. Photosynthesis Research, 2018, 138, 167-175.	2.9	6
15	To turn the tide in the Soviet scientific instrumentation: in memoriam Erlen I. Fedin (1926–2009). Structural Chemistry, 2018, 29, 1225-1234.	2.0	2
16	Analysis of photoprotection and apparent non-photochemical quenching of chlorophyll fluorescence in Tradescantia leaves based on the rate of irradiance-induced changes in optical transparence. Biochemistry (Moscow), 2017, 82, 67-74.	1.5	3
17	Acclimation of shade-tolerant and light-resistant Tradescantia species to growth light: chlorophyll a fluorescence, electron transport, and xanthophyll content. Photosynthesis Research, 2017, 133, 87-102.	2.9	20
18	EPR in the USSR: the thorny path from birth to biological and chemical applications. Photosynthesis Research, 2017, 134, 133-147.	2.9	5

VASILY PTUSHENKO

#	Article	IF	CITATIONS
19	The Physcomitrella patens Chloroplast Proteome Changes in Response to Protoplastation. Frontiers in Plant Science, 2016, 7, 1661.	3.6	16
20	Tolerance of the photosynthetic apparatus to acidification of the growth medium as a possible determinant of CO2-tolerance of the symbiotic microalga Desmodesmus sp. IPPAS-2014. Biochemistry (Moscow), 2016, 81, 1531-1537.	1.5	9
21	An exceptional irradiance-induced decrease of light trapping in two Tradescantia species: an unexpected relationship with the leaf architecture and zeaxanthin-mediated photoprotection. Biologia Plantarum, 2016, 60, 385-393.	1.9	11
22	Influence of extreme ambient temperatures and anaerobic conditions on Peltigera aphthosa (L.) Willd. viability. Life Sciences in Space Research, 2015, 7, 66-72.	2.3	2
23	Possible reasons of a decline in growth of Chinese cabbage under a combined narrowband red and blue light in comparison with illumination by high-pressure sodium lamp. Scientia Horticulturae, 2015, 194, 267-277.	3.6	16
24	Electrostatics of the photosynthetic bacterial reaction center. Protonation of Glu L 212 and Asp L 213 — A new method of calculation. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 1495-1508.	1.0	7
25	Mechanism of primary and secondary ion-radical pair formation in photosystem I complexes. Biochemistry (Moscow), 2014, 79, 221-226.	1.5	6
26	Chlorophyll fluorescence induction, chlorophyll content, and chromaticity characteristics of leaves as indicators of photosynthetic apparatus senescence in arboreous plants. Biochemistry (Moscow), 2014, 79, 260-272.	1.5	18
27	Molecular dynamics study of the primary charge separation reactions in Photosystem I: Effect of the replacement of the axial ligands to the electron acceptor AO. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1472-1483.	1.0	16
28	Chlorophyll fluorescence in the leaves of Tradescantia species of different ecological groups: Induction events at different intensities of actinic light. BioSystems, 2013, 114, 85-97.	2.0	27
29	Effects of light environment on the induction of chlorophyll fluorescence in leaves: A comparative study of Tradescantia species of different ecotypes. BioSystems, 2011, 105, 41-48.	2.0	24
30	P680 (PD1PD2) and ChlD1 as alternative electron donors in photosystem II core complexes and isolated reaction centers. Journal of Photochemistry and Photobiology B: Biology, 2011, 104, 44-50.	3.8	51
31	Semi-continuum electrostatic calculations of redox potentials in photosystem I. Photosynthesis Research, 2008, 97, 55-74.	2.9	96
32	Oxygen as an alternative electron acceptor in the photosynthetic electron transport chain of C3 plants. Biochemistry (Moscow), 2008, 73, 1063-1075.	1.5	30
33	Interaction of imidazoline- and imidazolidine-based nitroxides with chloroplasts. Applied Magnetic Resonance, 2006, 30, 329-343.	1.2	11
34	Interaction of Amaranthin with the Electron Transport Chain of Chloroplasts. Russian Journal of Plant Physiology, 2002, 49, 585-591.	1.1	4