David Arraez-Roman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7787722/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	HPLC–DAD–ESI-MS/MS screening of bioactive components from Rhus coriaria L. (Sumac) fruits. Food Chemistry, 2015, 166, 179-191.	4.2	368
2	Advances in the analysis of phenolic compounds in products derived from bees. Journal of Pharmaceutical and Biomedical Analysis, 2006, 41, 1220-1234.	1.4	323
3	Characterization of phenolic compounds, anthocyanidin, antioxidant and antimicrobial activity of 25 varieties of Mexican Roselle (Hibiscus sabdariffa). Industrial Crops and Products, 2015, 69, 385-394.	2.5	165
4	Profiles of phenolic compounds in modern and old common wheat varieties determined by liquid chromatography coupled with time-of-flight mass spectrometry. Journal of Chromatography A, 2011, 1218, 7670-7681.	1.8	159
5	Rosmarinus Officinalis Leaves as a Natural Source of Bioactive Compounds. International Journal of Molecular Sciences, 2014, 15, 20585-20606.	1.8	157
6	Use of advanced techniques for the extraction of phenolic compounds from Tunisian olive leaves: Phenolic composition and cytotoxicity against human breast cancer cells. Food and Chemical Toxicology, 2012, 50, 1817-1825.	1.8	130
7	Qualitative screening of phenolic compounds in olive leaf extracts by hyphenated liquid chromatography and preliminary evaluation of cytotoxic activity against human breast cancer cells. Analytical and Bioanalytical Chemistry, 2010, 397, 643-654.	1.9	119
8	LCâ€MSâ€based metabolite profiling of methanolic extracts from the medicinal and aromatic species <i>Mentha pulegium</i> and <i>Origanum majorana</i> . Phytochemical Analysis, 2015, 26, 320-330.	1.2	118
9	Quantification of main phenolic compounds in sweet and bitter orange peel using CE–MS/MS. Food Chemistry, 2009, 116, 567-574.	4.2	115
10	Extensive characterisation of bioactive phenolic constituents from globe artichoke (Cynara scolymus) Tj ETQq0 C	0 rgBT /C 4.2	verlock 10 ⁻ 112
11	Reversed-phase ultra-high-performance liquid chromatography coupled to electrospray ionization-quadrupole-time-of-flight mass spectrometry as a powerful tool for metabolic profiling of vegetables: Lactuca sativa as an example of its application. Journal of Chromatography A, 2013, 1313, 212-227.	1.8	110
12	HPLC–ESI-Q-TOF-MS for a comprehensive characterization of bioactive phenolic compounds in cucumber whole fruit extract. Food Research International, 2012, 46, 108-117.	2.9	109
13	Microwave-assisted extraction for Hibiscus sabdariffa bioactive compounds. Journal of Pharmaceutical and Biomedical Analysis, 2018, 156, 313-322.	1.4	105
14	Enhanced and green extraction of bioactive compounds from Lippia citriodora by tailor-made natural deep eutectic solvents. Food Research International, 2018, 111, 67-76.	2.9	101
15	Choline chloride derivative-based deep eutectic liquids as novel green alternative solvents for extraction of phenolic compounds from olive leaf. Arabian Journal of Chemistry, 2020, 13, 1685-1701.	2.3	101
16	Comparison of different extraction procedures for the comprehensive characterization of bioactive phenolic compounds in Rosmarinus officinalis by reversed-phase high-performance liquid chromatography with diode array detection coupled to electrospray time-of-flight mass spectrometry. Journal of Chromatography A. 2011, 1218, 7682-7690.	1.8	94
17	Lipid nanocarriers for the loading of polyphenols – A comprehensive review. Advances in Colloid and Interface Science, 2018, 260, 85-94.	7.0	94

Optimization of Microwave-Assisted Extraction for the Characterization of Olive Leaf Phenolic Compounds by Using HPLC-ESI-TOF-MS/IT-MS². Journal of Agricultural and Food Chemistry, 2.4 85 2012, 60, 791-798.

#	Article	IF	CITATIONS
19	Pressurized liquid extraction–capillary electrophoresis–mass spectrometry for the analysis of polar antioxidants in rosemary extracts. Journal of Chromatography A, 2005, 1084, 54-62.	1.8	82
20	Identification of buckwheat phenolic compounds by reverse phase high performance liquid chromatography–electrospray ionization-time of flight-mass spectrometry (RP-HPLC–ESI-TOF-MS). Journal of Cereal Science, 2010, 52, 170-176.	1.8	77
21	UHPLCâ€ESIâ€QTOFâ€MSâ€based metabolic profiling of <i>Vicia faba</i> L. (Fabaceae) seeds as a key strategy fo characterization in foodomics. Electrophoresis, 2014, 35, 1571-1581.	or 1.3	77
22	Supercritical CO2 extraction of bioactive compounds from Hibiscus sabdariffa. Journal of Supercritical Fluids, 2019, 147, 213-221.	1.6	75
23	Profiling of phenolic and other polar constituents from hydro-methanolic extract of watermelon (Citrullus lanatus) by means of accurate-mass spectrometry (HPLC–ESI–QTOF–MS). Food Research International, 2013, 51, 354-362.	2.9	73
24	Influence of technological processes on phenolic compounds, organic acids, furanic derivatives, and antioxidant activity of whole-lemon powder. Food Chemistry, 2013, 141, 869-878.	4.2	73
25	Determination of Free and Bound Phenolic Compounds in Buckwheat Spaghetti by RP-HPLC-ESI-TOF-MS: Effect of Thermal Processing from Farm to Fork. Journal of Agricultural and Food Chemistry, 2011, 59, 7700-7707.	2.4	72
26	Identification of phenolic compounds in rosemary honey using solid-phase extraction by capillary electrophoresis–electrospray ionization-mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2006, 41, 1648-1656.	1.4	68
27	Phytochemical Characterisation of Green Beans (<i>Phaseolus vulgaris L</i> .) by Using Highâ€performance Liquid Chromatography Coupled with Timeâ€ofâ€flight Mass Spectrometry. Phytochemical Analysis, 2013, 24, 105-116.	1.2	64
28	Development of a microwave-assisted extraction for the analysis of phenolic compounds from Rosmarinus officinalis. Journal of Food Engineering, 2013, 119, 525-532.	2.7	64
29	Determination of biogenic amines in beers and brewing-process samples by capillary electrophoresis coupled to laser-induced fluorescence detection. Food Chemistry, 2007, 100, 383-389.	4.2	62
30	Identification of phenolic compounds in aqueous and ethanolic rooibos extracts (Aspalathus) Tj ETQq0 0 0 rgBT /	Dyerlock 1	.0 Tf 50 302
31	Analytical determination of antioxidants in tomato: Typical components of the Mediterranean diet. Journal of Separation Science, 2007, 30, 452-461.	1.3	61
32	Profiling of phenolic and other polar compounds in zucchini (Cucurbita pepo L.) by reverse-phase high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Food Research International, 2013, 50, 77-84.	2.9	61
33	The metabolic and vascular protective effects of olive (Olea europaea L.) leaf extract in diet-induced obesity in mice are related to the amelioration of gut microbiota dysbiosis and to its immunomodulatory properties. Pharmacological Research, 2019, 150, 104487.	3.1	59
34	Recent Advances in Phospholipids from Colostrum, Milk and Dairy By-Products. International Journal of Molecular Sciences, 2017, 18, 173.	1.8	56
35	UPLC–QTOF/MS for a Rapid Characterisation of Phenolic Compounds from Leaves of <i>Myrtus communis</i> L. Phytochemical Analysis, 2014, 25, 89-96.	1.2	53
36	UHPLC/MS 2 -based approach for the comprehensive metabolite profiling of bean (Vicia faba L.) by-products: A promising source of bioactive constituents. Food Research International, 2017, 93, 87-96.	2.9	52

#	Article	IF	CITATIONS
37	Phenolic Compounds in Flaxseed: a Review of Their Properties and Analytical Methods. An Overview of the Last Decade. Journal of Oleo Science, 2014, 63, 7-14.	0.6	51
38	Classification of â€~Chemlali' accessions according to the geographical area using chemometric methods of phenolic profiles analysed by HPLC–ESI-TOF–MS. Food Chemistry, 2012, 132, 561-566.	4.2	50
39	A bioguided identification of the active compounds that contribute to the antiproliferative/cytotoxic effects of rosemary extract on colon cancer cells. Food and Chemical Toxicology, 2015, 80, 215-222.	1.8	49
40	Characterization of isomers of oleuropein aglycon in olive oils by rapidâ€resolution liquid chromatography coupled to electrospray timeâ€ofâ€flight and ion trap tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2009, 23, 51-59.	0.7	46
41	Characterization of phenolic and other polar compounds in a lemon verbena extract by capillary electrophoresisâ€electrospray ionizationâ€mass spectrometry. Journal of Separation Science, 2010, 33, 2818-2827.	1.3	46
42	Capillary electrophoresis-electrospray ionization-mass spectrometry method to determine the phenolic fraction of extra-virgin olive oil. Electrophoresis, 2006, 27, 2182-2196.	1.3	44
43	Tentative Characterization of Novel Phenolic Compounds in Extra Virgin Olive Oils by Rapid-Resolution Liquid Chromatography Coupled with Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2009, 57, 11140-11147.	2.4	42
44	Radical Reduction of Epoxides Using a Titanocene(III)/Water System: Synthesis of βâ€Đeuterated Alcohols and Their Use as Internal Standards in Food Analysis. European Journal of Organic Chemistry, 2010, 2010, 4288-4295.	1.2	42
45	Comparative study of conventional and pressurized liquid extraction for recovering bioactive compounds from Lippia citriodora leaves. Food Research International, 2018, 109, 213-222.	2.9	41
46	Antiplatelet Activity of Natural Bioactive Extracts from Mango (Mangifera Indica L.) and its By-Products. Antioxidants, 2019, 8, 517.	2.2	41
47	The Occurrence and Bioactivity of Polyphenols in Tunisian Olive Products and byâ€Products: A Review. Journal of Food Science, 2012, 77, R83-92.	1.5	40
48	Untargeted metabolite profiling and phytochemical analysis of Micromeria fruticosa L. (Lamiaceae) leaves. Food Chemistry, 2019, 279, 128-143.	4.2	40
49	Characterization of bioactive compounds of Annona cherimola L. leaves using a combined approach based on HPLC-ESI-TOF-MS and NMR. Analytical and Bioanalytical Chemistry, 2018, 410, 3607-3619.	1.9	39
50	Determination of phenolic and other polar compounds in flaxseed oil using liquid chromatography coupled with time-of-flight mass spectrometry. Food Chemistry, 2011, 126, 332-338.	4.2	38
51	Characterization by high-performance liquid chromatography with diode-array detection coupled to time-of-flight mass spectrometry of the phenolic fraction in a cranberry syrup used to prevent urinary tract diseases, together with a study of its antibacterial activity. Journal of Pharmaceutical and Biomedical Analysis. 2012, 58, 34-41.	1.4	38
52	Identification of polyphenols and their metabolites in human urine after cranberry-syrup consumption. Food and Chemical Toxicology, 2013, 55, 484-492.	1.8	37
53	Comprehensive metabolite profiling of Arum palaestinum (Araceae) leaves by using liquid chromatography–tandem mass spectrometry. Food Research International, 2015, 70, 74-86.	2.9	37
54	Box-Behnken experimental design for a green extraction method of phenolic compounds from olive leaves. Industrial Crops and Products, 2020, 154, 112741.	2.5	37

#	Article	IF	CITATIONS
55	Polyphenols-enriched Hibiscus sabdariffa extract-loaded nanostructured lipid carriers (NLC): Optimization by multi-response surface methodology. Journal of Drug Delivery Science and Technology, 2019, 49, 660-667.	1.4	36
56	Differential metabolomic analysis of the potential antiproliferative mechanism of olive leaf extract on the JIMT-1 breast cancer cell line. Journal of Pharmaceutical and Biomedical Analysis, 2015, 105, 156-162.	1.4	35
57	Evaluation of the intestinal permeability of rosemary (Rosmarinus officinalis L.) extract polyphenols and terpenoids in Caco-2 cell monolayers. PLoS ONE, 2017, 12, e0172063.	1.1	35
58	A novel sustainable approach for the extraction of value-added compounds from Hibiscus sabdariffa L. calyces by natural deep eutectic solvents. Food Research International, 2020, 137, 109646.	2.9	34
59	Subminute and sensitive determination of the neurotransmitter serotonin in urine by capillary electrophoresis with laser-inducedï¬,uorescence detection. Biomedical Chromatography, 2004, 18, 422-426.	0.8	32
60	Antioxidant compounds of propolis determined by capillary electrophoresis–mass spectrometry. Journal of Separation Science, 2007, 30, 595-603.	1.3	32
61	Characterisation of Phenolic Compounds by HPLC–TOF/IT/MS in Buds and Open Flowers of â€~Chemlali' Olive Cultivar. Phytochemical Analysis, 2013, 24, 504-512.	1.2	31
62	Nano-liquid chromatography coupled to time-of-flight mass spectrometry for phenolic profiling: A case study in cranberry syrups. Talanta, 2015, 132, 929-938.	2.9	31
63	Analysis of choline and atropine in hairy root cultures ofCannabis sativaâ€L. by capillary electrophoresis-electrospray mass spectrometry. Electrophoresis, 2006, 27, 2208-2215.	1.3	30
64	Characterization of <i>Atropa belladonna</i> L. compounds by capillary electrophoresisâ€electrospray ionizationâ€time of flightâ€mass spectrometry and capillary electrophoresisâ€electrospray ionizationâ€ion trapâ€mass spectrometry. Electrophoresis, 2008, 29, 2112-2116.	1.3	30
65	Phenolic compounds in rosemary as potential source of bioactive compounds against colorectal cancer: In situ absorption and metabolism study. Journal of Functional Foods, 2017, 33, 202-210.	1.6	30
66	The prebiotic properties of Hibiscus sabdariffa extract contribute to the beneficial effects in diet-induced obesity in mice. Food Research International, 2020, 127, 108722.	2.9	30
67	Multiresidue analysis of phenylurea herbicides in environmental waters by capillary electrophoresis using electrochemical detection. Analytical and Bioanalytical Chemistry, 2005, 382, 519-526.	1.9	29
68	Characterization of the methanolic extract of hops using capillary electrophoresis-electrospray ionization-mass spectrometry. Electrophoresis, 2006, 27, 2197-2207.	1.3	28
69	Identification of phenolic compounds from pollen extracts using capillary electrophoresis–electrospray time-of-flight mass spectrometry. Analytical and Bioanalytical Chemistry, 2007, 389, 1909-1917.	1.9	28
70	Changes in the Content of Phenolic Compounds in Flaxseed Oil During Development. JAOCS, Journal of the American Oil Chemists' Society, 2011, 88, 1135-1142.	0.8	28
71	Permeability Study of Polyphenols Derived from a Phenolic-Enriched Hibiscus sabdariffa Extract by UHPLC-ESI-UHR-Qq-TOF-MS. International Journal of Molecular Sciences, 2015, 16, 18396-18411.	1.8	28
72	HPLC/CEâ€ESIâ€TOFâ€MS methods for the characterization of polyphenols in almondâ€skin extracts. Electrophoresis, 2010, 31, 2289-2296.	1.3	27

#	Article	IF	CITATIONS
73	Establishment of pressurized-liquid extraction by response surface methodology approach coupled to HPLC-DAD-TOF-MS for the determination of phenolic compounds of myrtle leaves. Analytical and Bioanalytical Chemistry, 2018, 410, 3547-3557.	1.9	27
74	Pleiotropic Biological Effects of Dietary Phenolic Compounds and their Metabolites on Energy Metabolism, Inflammation and Aging. Molecules, 2020, 25, 596.	1.7	26
75	HPLC-DAD-Q-ToF-MS profiling of phenolic compounds from mango (Mangifera indica L.) seed kernel of different cultivars and maturation stages as a preliminary approach to determine functional and nutraceutical value. Food Chemistry, 2021, 337, 127764.	4.2	25
76	Comparative Study of the Antioxidant and Anti-Inflammatory Effects of Leaf Extracts from Four Different Morus alba Genotypes in High Fat Diet-Induced Obesity in Mice. Antioxidants, 2020, 9, 733.	2.2	24
77	Evolution of bioactive compounds of three mango cultivars (Mangifera indica L.) at different maturation stages analyzed by HPLC-DAD-q-TOF-MS. Food Research International, 2019, 125, 108526.	2.9	23
78	Marine Invertebrate Extracts Induce Colon Cancer Cell Death via ROS-Mediated DNA Oxidative Damage and Mitochondrial Impairment. Biomolecules, 2019, 9, 771.	1.8	21
79	GC-QTOF-MS as valuable tool to evaluate the influence of cultivar and sample time on olive leaves triterpenic components. Food Research International, 2019, 115, 219-226.	2.9	21
80	Interfacing capillary electrophoresis and surface-enhanced resonance Raman spectroscopy for the determination of dye compounds. Analytical and Bioanalytical Chemistry, 2005, 382, 180-185.	1.9	20
81	Bioassay-guided purification of Lippia citriodora polyphenols with AMPK modulatory activity. Journal of Functional Foods, 2018, 46, 514-520.	1.6	20
82	Potential Hepatoprotective Activity of Super Critical Carbon Dioxide Olive Leaf Extracts against CCl4-Induced Liver Damage. Foods, 2020, 9, 804.	1.9	20
83	Functional Ingredients based on Nutritional Phenolics. A Case Study against Inflammation: Lippia Genus. Nutrients, 2019, 11, 1646.	1.7	19
84	Activation of Human Brown Adipose Tissue by Capsinoids, Catechins, Ephedrine, and Other Dietary Components: A Systematic Review. Advances in Nutrition, 2019, 10, 291-302.	2.9	19
85	The Beneficial Effects of <i>Lippia Citriodora</i> Extract on Dietâ€Induced Obesity in Mice Are Associated with Modulation in the Gut Microbiota Composition. Molecular Nutrition and Food Research, 2020, 64, e2000005.	1.5	19
86	Cosmeceutical Potential of Major Tropical and Subtropical Fruit By-Products for a Sustainable Revalorization. Antioxidants, 2022, 11, 203.	2.2	18
87	Quenched Phosphorescence Detection in Cyclodextrin-Based Electrokinetic Chromatography. Analytical Chemistry, 2002, 74, 5139-5145.	3.2	17
88	Changes in phenolic composition in olive tree parts according to development stage. Food Research International, 2017, 100, 454-461.	2.9	17
89	Monitoring the Bioactive Compounds Status in Olea europaea According to Collecting Period and Drying Conditions. Energies, 2019, 12, 947.	1.6	16
90	The Potential Synergistic Modulation of AMPK by Lippia citriodora Compounds as a Target in Metabolic Disorders. Nutrients, 2019, 11, 2961.	1.7	16

#	Article	IF	CITATIONS
91	Optimized Extraction of Phenylpropanoids and Flavonoids from Lemon Verbena Leaves by Supercritical Fluid System Using Response Surface Methodology. Foods, 2020, 9, 931.	1.9	16
92	Determination of aldicarb, carbofuran and some of their main metabolites in groundwater by application of micellar electrokinetic capillary chromatography with diode-array detection and solid-phase extraction. Pest Management Science, 2004, 60, 675-679.	1.7	14
93	A simple light-emitted diode-induced fluorescence detector using optical fibers and a charged coupled device for direct and indirect capillary electrophoresis methods. Electrophoresis, 2006, 27, 1776-1783.	1.3	14
94	Manufacturing design to improve the attainment of functional ingredients from Aloysia citriodora leaves by advanced microwave technology. Journal of Industrial and Engineering Chemistry, 2019, 79, 52-61.	2.9	14
95	Pressurized GRAS solvents for the green extraction of phenolic compounds from hibiscus sabdariffa calyces. Food Research International, 2020, 137, 109466.	2.9	14
96	Recent Analytical Approaches for the Study of Bioavailability and Metabolism of Bioactive Phenolic Compounds. Molecules, 2022, 27, 777.	1.7	14
97	Biological Evaluation of Avocado Residues as a Potential Source of Bioactive Compounds. Antioxidants, 2022, 11, 1049.	2.2	14
98	Profiling phenolic compounds in underutilized mango peel by-products from cultivars grown in Spanish subtropical climate over maturation course. Food Research International, 2021, 140, 109852.	2.9	13
99	Olea europaea as Potential Source of Bioactive Compounds for Diseases Prevention. Studies in Natural Products Chemistry, 2018, , 389-411.	0.8	11
100	Spray-Drying Microencapsulation of Bioactive Compounds from Lemon Verbena Green Extract. Foods, 2020, 9, 1547.	1.9	11
101	Assessment of conventional and microwave heating effects on the variation of the bioactive compounds of Chétoui VOO using HPLC-DAD-ESI-TOF-MS. Arabian Journal of Chemistry, 2020, 13, 954-965.	2.3	11
102	Geographical Characterization of Tunisian Olive Tree Leaves (cv. Chemlali) Using HPLC-ESI-TOF and IT/MS Fingerprinting with Hierarchical Cluster Analysis. Journal of Analytical Methods in Chemistry, 2018, 2018, 1-10.	0.7	10
103	Incorporation of Lippia citriodora Microwave Extract into Total-Green Biogelatin-Phospholipid Vesicles to Improve Its Antioxidant Activity. Nanomaterials, 2020, 10, 765.	1.9	9
104	Evaluation of different extraction approaches for the determination of phenolic compounds and their metabolites in plasma by nanoLC-ESI-TOF-MS. Analytical and Bioanalytical Chemistry, 2012, 404, 3081-3090.	1.9	8
105	Comprehensive Analysis of Antioxidant Compounds from Lippia citriodora and Hibiscus sabdariffa Green Extracts Attained by Response Surface Methodology. Antioxidants, 2020, 9, 1175.	2.2	8
106	Development of advanced phospholipid vesicles loaded with Lippia citriodora pressurized liquid extract for the treatment of gastrointestinal disorders. Food Chemistry, 2021, 337, 127746.	4.2	8
107	A Box-Behnken Design for Optimal Green Extraction of Compounds from Olive Leaves That Potentially Activate the AMPK Pathway. Applied Sciences (Switzerland), 2020, 10, 4620.	1.3	5
108	A convenient antibiotic indicator in the ozone treatment of wastewaters. An experimental and theoretical study. New Journal of Chemistry, 2010, 34, 2205.	1.4	3

#	Article	IF	CITATIONS
109	Therapeutic Targets for Phenolic Compounds from Agro-industrial By-products against Obesity. Current Medicinal Chemistry, 2022, 29, 1083-1098.	1.2	3
110	Changes in the triacylglycerol content of flaxseeds during development using liquid chromatography- atmospheric pressure photoionization-mass spectrometry (LC-APPI-MS). African Journal of Biotechnology, 2012, 11, .	0.3	1
111	Los fenoles del polen del género Zea. Acta Botanica Mexicana, 2015, 1, 59.	0.1	1
112	Quality Assurance of commercial guacamoles preserved by high pressure processing versus conventional thermal processing. Food Control, 2022, 135, 108791.	2.8	1
113	VIRTUAL LABORATORY: INTERACTIVE AND SIMULATED HIGH PERFORMANCE LIQUID CHROMATOGRAPHY. INTED Proceedings, 2017, , .	0.0	0
114	GAS CHROMATOGRAPHY SIMULATORS AS VIRTUAL AND INTERACTIVE EDUCATIONAL RESOURCES. , 2018, , .		0
115	COLLABORATION BETWEEN TRANSLATOR AND SPECIALIST AS VALUABLE TOOL TO IMPROVE THE SCIENTIFIC TRANSLATION QUALITY. INTED Proceedings, 2018, , .	0.0	0
116	Comparative Evaluation of the Total Antioxidant Capacities of Plant Polyphenols in Different Natural Sources. Medical Sciences Forum, 2021, 2, 1.	0.5	0