Timothy A Springer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/778756/publications.pdf Version: 2024-02-01

		1097	718
309	66,340	112	252
papers	citations	h-index	g-index
331	331	331	33411
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Traffic signals for lymphocyte recirculation and leukocyte emigration: The multistep paradigm. Cell, 1994, 76, 301-314.	13.5	6,758
2	Adhesion receptors of the immune system. Nature, 1990, 346, 425-434.	13.7	6,544
3	Leukocytes roll on a selectin at physiologic flow rates: Distinction from and prerequisite for adhesion through integrins. Cell, 1991, 65, 859-873.	13.5	2,131
4	The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature, 1996, 382, 829-833.	13.7	1,958
5	Purified intercellular adhesion molecule-1 (ICAM-1) is a ligand for lymphocyte function-associated antigen 1 (LFA-1). Cell, 1987, 51, 813-819.	13.5	1,688
6	Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 9448-9453.	3.3	1,537
7	T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1. Nature, 1989, 341, 619-624.	13.7	1,525
8	Structural Basis of Integrin Regulation and Signaling. Annual Review of Immunology, 2007, 25, 619-647.	9.5	1,438
9	Mac-1: a macrophage differentiation antigen identified by monoclonal antibody. European Journal of Immunology, 1979, 9, 301-306.	1.6	1,148
10	The Lymphocyte Function Associated LFA-1, CD2, and LFA-3 Molecules: Cell Adhesion Receptors of the Immune System. Annual Review of Immunology, 1987, 5, 223-252.	9.5	1,061
11	Global Conformational Rearrangements in Integrin Extracellular Domains in Outside-In and Inside-Out Signaling. Cell, 2002, 110, 599-611.	13.5	1,050
12	Primary structure of ICAM-1 demonstrates interaction between members of the immunoglobulin and integrin supergene families. Cell, 1988, 52, 925-933.	13.5	943
13	A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinoviruses. Cell, 1989, 56, 849-853.	13.5	853
14	Latent TGF-Î ² structure and activation. Nature, 2011, 474, 343-349.	13.7	815
15	Functional cloning of ICAM-2, a cell adhesion ligand for LFA-1 homologous to ICAM-1. Nature, 1989, 339, 61-64.	13.7	800
16	Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature, 2004, 432, 59-67.	13.7	762
17	Binding of the integrin Mac-1 (CD11b/CD18) to the third immunoglobulin-like domain of ICAM-1 (CD54) and its regulation by glycosylation. Cell, 1991, 65, 961-971.	13.5	757
18	Bidirectional Transmembrane Signaling by Cytoplasmic Domain Separation in Integrins. Science, 2003, 301, 1720-1725.	6.0	714

#	Article	IF	CITATIONS
19	The arrangement of the immunoglobulin-like domains of ICAM-1 and the binding sites for LFA-1 and rhinovirus. Cell, 1990, 61, 243-254.	13.5	710
20	Lifetime of the P-selectin-carbohydrate bond and its response to tensile force in hydrodynamic flow. Nature, 1995, 374, 539-542.	13.7	657
21	The Chemokine Receptor CXCR4 Is Required for the Retention of B Lineage and Granulocytic Precursors within the Bone Marrow Microenvironment. Immunity, 1999, 10, 463-471.	6.6	635
22	Structure and Function of Leukocyte Integrins. Immunological Reviews, 1990, 114, 181-217.	2.8	612
23	ICAM-1 a ligand for LFA-1-dependent adhesion of B, T and myeloid cells. Nature, 1988, 331, 86-88.	13.7	585
24	The Genome of M. acetivorans Reveals Extensive Metabolic and Physiological Diversity. Genome Research, 2002, 12, 532-542.	2.4	573
25	A transmigratory cup in leukocyte diapedesis both through individual vascular endothelial cells and between them. Journal of Cell Biology, 2004, 167, 377-388.	2.3	573
26	Role of Lymphocyte Adhesion Receptors in Transient Interactions and Cell Locomotion. Annual Review of Immunology, 1991, 9, 27-66.	9.5	541
27	Structures of the αL I Domain and Its Complex with ICAM-1 Reveal a Shape-Shifting Pathway for Integrin Regulation. Cell, 2003, 112, 99-111.	13.5	499
28	Mechanoenzymatic Cleavage of the Ultralarge Vascular Protein von Willebrand Factor. Science, 2009, 324, 1330-1334.	6.0	484
29	Integrin avidity regulation: are changes in affinity and conformation underemphasized?. Current Opinion in Cell Biology, 2003, 15, 547-556.	2.6	481
30	Conformational Regulation of Integrin Structure and Function. Annual Review of Biophysics and Biomolecular Structure, 2002, 31, 485-516.	18.3	474
31	The T lymphocyte glycoprotein CD2 binds the cell surface ligand LFA-3. Nature, 1987, 326, 400-403.	13.7	462
32	The dynamic regulation of integrin adhesiveness. Current Biology, 1994, 4, 506-517.	1.8	443
33	Transcellular Diapedesis Is Initiated by Invasive Podosomes. Immunity, 2007, 26, 784-797.	6.6	440
34	Adhesion through L-selectin requires a threshold hydrodynamic shear. Nature, 1996, 379, 266-269.	13.7	434
35	Two antigen-independent adhesion pathways used by human cytotoxic T-cell clones. Nature, 1986, 323, 262-264.	13.7	432
36	Structure of a Complete Integrin Ectodomain in a Physiologic Resting State and Activation and Deactivation by Applied Forces. Molecular Cell, 2008, 32, 849-861.	4.5	429

#	Article	IF	CITATIONS
37	Sticky sugars for selectins. Nature, 1991, 349, 196-197.	13.7	420
38	RIAM, an Ena/VASP and Profilin Ligand, Interacts with Rap1-GTP and Mediates Rap1-Induced Adhesion. Developmental Cell, 2004, 7, 585-595.	3.1	382
39	The major Fc receptor in blood has a phosphatidylinositol anchor and is deficient in paroxysmal nocturnal haemoglobinuria. Nature, 1988, 333, 565-567.	13.7	378
40	Heterogeneous mutations in the β subunit common to the LFA-1, Mac-1, and p150,95 glycoproteins cause leukocyte adhesion deficiency. Cell, 1987, 50, 193-202.	13.5	374
41	THE SMALL SUBUNIT OF HL-A ANTIGENS IS ß2-MICROGLOBULIN. Journal of Experimental Medicine, 1973, 138, 1608-1612.	4.2	371
42	Integrin inside-out signaling and the immunological synapse. Current Opinion in Cell Biology, 2012, 24, 107-115.	2.6	367
43	von Willebrand factor, Jedi knight of the bloodstream. Blood, 2014, 124, 1412-1425.	0.6	365
44	The Kinetics of L-selectin Tethers and the Mechanics of Selectin-mediated Rolling. Journal of Cell Biology, 1997, 138, 1169-1180.	2.3	340
45	Functional evidence that intercellular adhesion molecule-1 (icam-1) is a ligand for lfa-1d-ependent adhesion in t cell-mediated cytotoxicity. European Journal of Immunology, 1988, 18, 637-640.	1.6	328
46	Integrin activation and structural rearrangement. Immunological Reviews, 2002, 186, 141-163.	2.8	324
47	Structure of integrin Â5Â1 in complex with fibronectin. EMBO Journal, 2003, 22, 4607-4615.	3.5	305
48	Therapeutic antagonists and conformational regulation of integrin function. Nature Reviews Drug Discovery, 2003, 2, 703-716.	21.5	304
49	A soluble form of intercellular adhesion molecule-1 inhibits rhinovirus infection. Nature, 1990, 344, 70-72.	13.7	303
50	Cysteine-rich module structure reveals a fulcrum for integrin rearrangement upon activation. Nature Structural Biology, 2002, 9, 282-287.	9.7	275
51	Structural Biology and Evolution of the TGF-β Family. Cold Spring Harbor Perspectives in Biology, 2016, 8, a022103.	2.3	267
52	Integrin structures and conformational signaling. Current Opinion in Cell Biology, 2006, 18, 579-586.	2.6	252
53	A mechanically stabilized receptor–ligand flex-bond important in the vasculature. Nature, 2010, 466, 992-995.	13.7	251
54	Sequence and structure relationships within von Willebrand factor. Blood, 2012, 120, 449-458.	0.6	251

#	Article	IF	CITATIONS
55	B Lymphocyte Chemotaxis Regulated in Association with Microanatomic Localization, Differentiation State, and B Cell Receptor Engagement. Journal of Experimental Medicine, 1998, 187, 753-762.	4.2	248
56	C-terminal opening mimics 'inside-out' activation of integrin alpha5beta1. Nature Structural Biology, 2001, 8, 412-416.	9.7	239
57	Activation of Leukocyte β2 Integrins by Conversion from Bent to Extended Conformations. Immunity, 2006, 25, 583-594.	6.6	233
58	Force interacts with macromolecular structure in activation of TGF-Î ² . Nature, 2017, 542, 55-59.	13.7	222
59	The primacy of affinity over clustering in regulation of adhesiveness of the integrin αLβ2. Journal of Cell Biology, 2004, 167, 1241-1253.	2.3	221
60	Anchoring mechanisms for LFA-3 cell adhesion glycoprotein at membrane surface. Nature, 1987, 329, 846-848.	13.7	218
61	LFA-1 and Lyt-2,3, Molecules Associated with T Lymphocyte-Mediated Killing; and Mac-1, an LFA-1 Homologue Associated with Complement Receptor Function1. Immunological Reviews, 1982, 68, 171-196.	2.8	217
62	Role for CCR7 Ligands in the Emigration of Newly Generated T Lymphocytes from the Neonatal Thymus. Immunity, 2002, 16, 205-218.	6.6	216
63	The chemokine receptor CXCR3 mediates rapid and shear-resistant adhesion-induction of effector T lymphocytes by the chemokines IP10 and Mig. European Journal of Immunology, 1998, 28, 961-972.	1.6	215
64	An Automatic Braking System That Stabilizes Leukocyte Rolling by an Increase in Selectin Bond Number with Shear. Journal of Cell Biology, 1999, 144, 185-200.	2.3	208
65	Structural basis for distinctive recognition of fibrinogen γC peptide by the platelet integrin αIIbβ3. Journal of Cell Biology, 2008, 182, 791-800.	2.3	205
66	Implications for familial hypercholesterolemia from the structure of the LDL receptor YWTD-EGF domain pair. Nature Structural Biology, 2001, 8, 499-504.	9.7	201
67	Endothelial Cells Proactively Form Microvilli-Like Membrane Projections upon Intercellular Adhesion Molecule 1 Engagement of Leukocyte LFA-1. Journal of Immunology, 2003, 171, 6135-6144.	0.4	197
68	Changes in subcellular localization and surface expression of L-selectin, alkaline phosphatase, and Mac-1 in human neutrophils during stimulation with inflammatory mediators. Journal of Leukocyte Biology, 1994, 56, 80-87.	1.5	192
69	Complete integrin headpiece opening in eight steps. Journal of Cell Biology, 2013, 201, 1053-1068.	2.3	191
70	The C–C Chemokine MCP-1 Differentially Modulates the Avidity of β1 and β2 Integrins on T Lymphocytes. Immunity, 1996, 4, 179-187.	6.6	188
71	Immunohistologic analysis of the distribution of cell adhesion molecules within the inflammatory synovial microenvironment. Arthritis and Rheumatism, 1989, 32, 22-30.	6.7	186
72	Monoclonal antibodies as probes for differentiation and tumor-associated antigens: a Forssman specificity on teratocarcinoma stem cells. Cell, 1978, 14, 775-783.	13.5	185

#	Article	IF	CITATIONS
73	Rolling Adhesion through an Extended Conformation of Integrin αLβ2 and Relation to α I and β I-like Domain Interaction. Immunity, 2004, 20, 393-406.	6.6	185
74	An extracellular β-propeller module predicted in lipoprotein and scavenger receptors, tyrosine kinases, epidermal growth factor precursor, and extracellular matrix components 1 1Edited by P. E. Wright. Journal of Molecular Biology, 1998, 283, 837-862.	2.0	183
75	Intercellular adhesion molecule-1-deficient mice are less susceptible to cerebral ischemia-reperfusion Injury. Annals of Neurology, 1996, 39, 618-624.	2.8	182
76	C-C chemokines, but not the C-X-C chemokines interleukin-8 and interferon-γ inducible protein-10, stimulate transendothelial chemotaxis of T lymphocytes. European Journal of Immunology, 1995, 25, 3482-3488.	1.6	180
77	Domains in plexins: links to integrins and transcription factors. Trends in Biochemical Sciences, 1999, 24, 261-263.	3.7	180
78	Structural Evidence for Loose Linkage between Ligand Binding and Kinase Activation in the Epidermal Growth Factor Receptor. Molecular and Cellular Biology, 2010, 30, 5432-5443.	1.1	179
79	Regulation of integrin affinity on cell surfaces. EMBO Journal, 2011, 30, 4712-4727.	3.5	177
80	Plasmodium falciparum-infected erythrocytes bind ICAM-1 at a site distinct from LFA-1, Mac-1, and human rhinovirus. Cell, 1992, 68, 63-69.	13.5	168
81	Structural specializations of A2, a force-sensing domain in the ultralarge vascular protein von Willebrand factor. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9226-9231.	3.3	167
82	Structure of an integrin with an αI domain, complement receptor type 4. EMBO Journal, 2010, 29, 666-679.	3.5	164
83	Trans-cellular migration: cell–cell contacts get intimate. Current Opinion in Cell Biology, 2008, 20, 533-540.	2.6	163
84	Epitope Mapping of Antibodies to the C-Terminal Region of the Integrin β2 Subunit Reveals Regions that Become Exposed Upon Receptor Activation. Journal of Immunology, 2001, 166, 5629-5637.	0.4	162
85	A Specific Interface between Integrin Transmembrane Helices and Affinity for Ligand. PLoS Biology, 2004, 2, e153.	2.6	162
86	Structural specializations of immunoglobulin superfamily members for adhesion to integrins and viruses. Immunological Reviews, 1998, 163, 197-215.	2.8	161
87	Interrogating the Plasmodium Sporozoite Surface: Identification of Surface-Exposed Proteins and Demonstration of Glycosylation on CSP and TRAP by Mass Spectrometry-Based Proteomics. PLoS Pathogens, 2016, 12, e1005606.	2.1	159
88	Cloning from purified high endothelial venule cells of hevin, a close relative of the antiadhesive extracellular matrix protein SPARC. Immunity, 1995, 2, 113-123.	6.6	154
89	Antigen Recognition Is Facilitated by Invadosome-like Protrusions Formed by Memory/Effector T Cells. Journal of Immunology, 2012, 188, 3686-3699.	0.4	154
90	Coordinated integrin activation by actin-dependent force during T-cell migration. Nature Communications, 2016, 7, 13119.	5.8	154

#	Article	IF	CITATIONS
91	GARP regulates the bioavailability and activation of TGFβ. Molecular Biology of the Cell, 2012, 23, 1129-1139.	0.9	153
92	The Sensation and Regulation of Interactions with the Extracellular Environment: The Cell Biology of Lymphocyte Adhesion Receptors. Annual Review of Cell Biology, 1990, 6, 359-402.	26.0	151
93	A Binding Interface on the I Domain of Lymphocyte Function-associated Antigen-1 (LFA-1) Required for Specific Interaction with Intercellular Adhesion Molecule 1 (ICAM-1). Journal of Biological Chemistry, 1995, 270, 19008-19016.	1.6	150
94	Flow-induced elongation of von Willebrand factor precedes tension-dependent activation. Nature Communications, 2017, 8, 324.	5.8	149
95	Association of the Membrane Proximal Regions of the α and β Subunit Cytoplasmic Domains Constrains an Integrin in the Inactive State. Journal of Biological Chemistry, 2001, 276, 14642-14648.	1.6	143
96	Bistable regulation of integrin adhesiveness by a bipolar metal ion cluster. Nature Structural and Molecular Biology, 2003, 10, 995-1001.	3.6	143
97	The Structure of a Receptor with Two Associating Transmembrane Domains on the Cell Surface: Integrin αIIbβ3. Molecular Cell, 2009, 34, 234-249.	4.5	142
98	Stabilizing the open conformation of the integrin headpiece with a glycan wedge increases affinity for ligand. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2403-2408.	3.3	139
99	Disrupting integrin transmembrane domain heterodimerization increases ligand binding affinity, not valency or clustering. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3679-3684.	3.3	136
100	Nonmuscle myosin heavy chain IIA mediates integrin LFA-1 de-adhesion during T lymphocyte migration. Journal of Experimental Medicine, 2008, 205, 195-205.	4.2	133
101	The Three-Dimensional Structure of Integrins and their Ligands, and Conformational Regulation of Cell Adhesion. Advances in Protein Chemistry, 2004, 68, 29-63.	4.4	132
102	Complex between nidogen and laminin fragments reveals a paradigmatic β-propeller interface. Nature, 2003, 424, 969-974.	13.7	131
103	Purification and structural characterisation of human HLA-linked B-cell antigens. Nature, 1977, 268, 213-218.	13.7	130
104	A Milieu Molecule for TGF-Î ² Required for Microglia Function in the Nervous System. Cell, 2018, 174, 156-171.e16.	13.5	130
105	Prolonged Eosinophil Accumulation in Allergic Lung Interstitium of ICAM-2-Deficient Mice Results in Extended Hyperresponsiveness. Immunity, 1999, 10, 9-19.	6.6	129
106	Small Molecule Integrin Antagonists that Bind to the β2 Subunit I-like Domain and Activate Signals in One Direction and Block Them in the Other. Immunity, 2003, 19, 391-402.	6.6	129
107	Structural transitions of complement component C3 and its activation products. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19737-19742.	3.3	128
108	Expression of Stromal-Derived Factor-1 Is Decreased by IL-1 and TNF and in Dermal Wound Healing. Journal of Immunology, 2001, 166, 5749-5754.	0.4	126

#	Article	IF	CITATIONS
109	Archaeal Surface Layer Proteins Contain β Propeller, PKD, and β Helix Domains and Are Related to Metazoan Cell Surface Proteins. Structure, 2002, 10, 1453-1464.	1.6	126
110	Simultaneous visualization of the extracellular and cytoplasmic domains of the epidermal growth factor receptor. Nature Structural and Molecular Biology, 2011, 18, 984-989.	3.6	126
111	Integrin extension enables ultrasensitive regulation by cytoskeletal force. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4685-4690.	3.3	125
112	Neutrophil tethering to and rolling on E-selectin are separable by requirement for L-selectin. Immunity, 1994, 1, 137-145.	6.6	124
113	Computational design of an integrin I domain stabilized in the open high affinity conformation. Nature Structural Biology, 2000, 7, 674-678.	9.7	123
114	Importance of Force Linkage in Mechanochemistry of Adhesion Receptors. Biochemistry, 2006, 45, 15020-15028.	1.2	119
115	Kinetics and Thermodynamics of Virus Binding to Receptor Journal of Biological Chemistry, 1995, 270, 13216-13224.	1.6	117
116	Crystal structure of ICAM-2 reveals a distinctive integrin recognition surface. Nature, 1997, 387, 312-315.	13.7	115
117	Structural determinants of integrin β-subunit specificity for latent TGF-β. Nature Structural and Molecular Biology, 2014, 21, 1091-1096.	3.6	115
118	Rolling of lymphocytes and neutrophils on peripheral node addressin and subsequent arrest on ICAM-1 in shear flow. European Journal of Immunology, 1995, 25, 1025-1031.	1.6	114
119	Modulation of Endothelial Cell Adhesion by Hevin, an Acidic Protein Associated with High Endothelial Venules. Journal of Biological Chemistry, 1996, 271, 4511-4517.	1.6	113
120	Requirement of open headpiece conformation for activation of leukocyte integrin α _X l² ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14727-14732.	3.3	113
121	Conformational equilibria and intrinsic affinities define integrin activation. EMBO Journal, 2017, 36, 629-645.	3.5	112
122	Relating conformation to function in integrin α ₅ β ₁ . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3872-81.	3.3	110
123	Remodeling of the lectin–EGF-like domain interface in P- and L-selectin increases adhesiveness and shear resistance under hydrodynamic force. Nature Immunology, 2006, 7, 883-889.	7.0	109
124	Overlapping and Selective Roles of Endothelial Intercellular Adhesion Molecule-1 (ICAM-1) and ICAM-2 in Lymphocyte Trafficking. Journal of Immunology, 2003, 171, 2588-2593.	0.4	103
125	Closed headpiece of integrin αllbβ3 and its complex with an αllbβ3-specific antagonist that does not induce opening. Blood, 2010, 116, 5050-5059.	0.6	103
126	A pH-regulated dimeric bouquet in the structure of von Willebrand factor. EMBO Journal, 2011, 30, 4098-4111.	3.5	102

#	Article	IF	CITATIONS
127	Structure of bone morphogenetic protein 9 procomplex. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3710-3715.	3.3	100
128	Structural specializations of $\hat{I}\pm4\hat{I}^2$ 7, an integrin that mediates rolling adhesion. Journal of Cell Biology, 2012, 196, 131-146.	2.3	97
129	Unexpected fold in the circumsporozoite protein target of malaria vaccines. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7817-7822.	3.3	96
130	Actin retrograde flow actively aligns and orients ligand-engaged integrins in focal adhesions. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10648-10653.	3.3	95
131	Conversion between Three Conformational States of Integrin I Domains with a C-Terminal Pull Spring Studied with Molecular Dynamics. Structure, 2004, 12, 2137-2147.	1.6	94
132	Structural Basis for Dimerization of ICAM-1 on the Cell Surface. Molecular Cell, 2004, 14, 269-276.	4.5	94
133	Exposure of acidic residues as a danger signal for recognition of fibrinogen and other macromolecules by integrin ÂXÂ2. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1614-1619.	3.3	91
134	Transition From Rolling to Firm Adhesion Is Regulated by the Conformation of the I Domain of the Integrin Lymphocyte Function-associated Antigen-1. Journal of Biological Chemistry, 2002, 277, 50255-50262.	1.6	90
135	Structure and allosteric regulation of the ÂXÂ2 integrin I domain. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1873-1878.	3.3	90
136	Functional and Structural Stability of the Epidermal Growth Factor Receptor in Detergent Micelles and Phospholipid Nanodiscs. Biochemistry, 2008, 47, 10314-10323.	1.2	89
137	Structural homology of a macrophage differentiation antigen and an antigen involved in T-cell-mediated killing. Nature, 1982, 296, 668-670.	13.7	88
138	Application of encoded library technology (ELT) to a protein–protein interaction target: Discovery of a potent class of integrin lymphocyte function-associated antigen 1 (LFA-1) antagonists. Bioorganic and Medicinal Chemistry, 2014, 22, 2353-2365.	1.4	88
139	Intersubunit signal transmission in integrins by a receptor-like interaction with a pull spring. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2906-2911.	3.3	87
140	Structural and Functional Studies with Antibodies to the Integrin β2 Subunit. Journal of Biological Chemistry, 2000, 275, 21514-21524.	1.6	86
141	Metal ion and ligand binding of integrin α ₅ β ₁ . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17863-17868.	3.3	86
142	Locking the β3 Integrin I-like Domain into High and Low Affinity Conformations with Disulfides. Journal of Biological Chemistry, 2004, 279, 10215-10221.	1.6	84
143	Specific and covalent labeling of a membrane protein with organic fluorochromes and quantum dots. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14753-14758.	3.3	83
144	Structural basis for selectin mechanochemistry. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 91-96.	3.3	83

#	Article	IF	CITATIONS
145	Direction of actin flow dictates integrin LFA-1 orientation during leukocyte migration. Nature Communications, 2017, 8, 2047.	5.8	83
146	An internal ligand-bound, metastable state of a leukocyte integrin, αXβ2. Journal of Cell Biology, 2013, 203, 629-642.	2.3	82
147	Integrin Â3 regions controlling binding of murine mAb 7E3: Implications for the mechanism of integrin ÂllbÂ3 activation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13114-13120.	3.3	80
148	Complement and the Multifaceted Functions of VWA and Integrin I Domains. Structure, 2006, 14, 1611-1616.	1.6	80
149	Shape change in the receptor for gliding motility in <i>Plasmodium</i> sporozoites. Proceedings of the United States of America, 2012, 109, 21420-21425.	3.3	78
150	Release of cellular tension signals self-restorative ventral lamellipodia to heal barrier micro-wounds. Journal of Cell Biology, 2013, 201, 449-465.	2.3	78
151	Sequence homology of the LFA-1 and Mac-1 leukocyte adhesion glycoproteins and unexpected relation to leukocyte interferon. Nature, 1985, 314, 540-542.	13.7	76
152	Modifying the mechanical property and shear threshold of L-selectin adhesion independently of equilibrium properties. Nature, 1998, 392, 930-933.	13.7	76
153	Structure-Guided Design of a High-Affinity Platelet Integrin α _{Ilb} β ₃ Receptor Antagonist That Disrupts Mg ²⁺ Binding to the MIDAS. Science Translational Medicine, 2012, 4, 125ra32.	5.8	76
154	Folding and Function of I Domain-deleted Mac-1 and Lymphocyte Function-associated Antigen-1. Journal of Biological Chemistry, 2000, 275, 21877-21882.	1.6	75
155	Rules of engagement between αvβ6 integrin and foot-and-mouth disease virus. Nature Communications, 2017, 8, 15408.	5.8	75
156	Directed evolution to probe protein allostery and integrin I domains of 200,000-fold higher affinity. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5758-5763.	3.3	74
157	Amino Acid Residues in the αIIb Subunit That Are Critical for Ligand Binding to Integrin αIIbβ3 Are Clustered in the β-Propeller Model. Journal of Biological Chemistry, 2001, 276, 44275-44283.	1.6	72
158	An atomic resolution view of ICAM recognition in a complex between the binding domains of ICAM-3 and integrin ÂLÂ2. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3366-3371.	3.3	70
159	Mechanisms for Kinase-mediated Dimerization of the Epidermal Growth Factor Receptor. Journal of Biological Chemistry, 2012, 287, 38244-38253.	1.6	70
160	Transendothelial chemotaxis of human αβ and γδT lymphocytes to chemokines. European Journal of Immunology, 1998, 28, 104-113.	1.6	69
161	Antigens involved in mouse cytolytic T-lymphocyte (CTL)-mediated killing: Functional screening and topographic relationship. Cellular Immunology, 1982, 73, 1-11.	1.4	68
162	Characterization of transendothelial chemotaxis of T lymphocytes. Journal of Immunological Methods, 1995, 188, 97-116.	0.6	68

#	Article	IF	CITATIONS
163	Cell-Surface Differentiation in the Mouse. , 1980, , 185-217.		68
164	Tenascin Supports Lymphocyte Rolling. Journal of Cell Biology, 1997, 137, 755-765.	2.3	67
165	Allosteric β1 Integrin Antibodies That Stabilize the Low Affinity State by Preventing the Swing-out of the Hybrid Domain. Journal of Biological Chemistry, 2004, 279, 27466-27471.	1.6	67
166	Two-dimensional Kinetics Regulation of αLβ2-ICAM-1 Interaction by Conformational Changes of the αL-Inserted Domain. Journal of Biological Chemistry, 2005, 280, 42207-42218.	1.6	67
167	α _V β ₃ Integrin Crystal Structures and Their Functional Implications. Biochemistry, 2012, 51, 8814-8828.	1.2	66
168	The structure of immunoglobulin superfamily domains 1 and 2 of MAdCAM-1 reveals novel features important for integrin recognition. Structure, 1998, 6, 793-801.	1.6	64
169	LFA-1 Expression on Target Cells Promotes Human Immunodeficiency Virus Type 1 Infection and Transmission. Journal of Virology, 2001, 75, 1077-1082.	1.5	64
170	Ultrastructure and Function of Dimeric, Soluble Intercellular Adhesion Molecule-1 (ICAM-1). Journal of Biological Chemistry, 2001, 276, 29019-29027.	1.6	62
171	Transition from Rolling to Firm Adhesion Can Be Mimicked by Extension of Integrin αLβ2 in an Intermediate Affinity State. Journal of Biological Chemistry, 2006, 281, 10876-10882.	1.6	62
172	Transmission of allostery through the lectin domain in selectin-mediated cell adhesion. Proceedings of the United States of America, 2009, 106, 85-90.	3.3	62
173	Intact αIIbβ3 Integrin Is Extended after Activation as Measured by Solution X-ray Scattering and Electron Microscopy. Journal of Biological Chemistry, 2011, 286, 35218-35226.	1.6	62
174	How Natalizumab Binds and Antagonizes α4 Integrins. Journal of Biological Chemistry, 2013, 288, 32314-32325.	1.6	62
175	Structural Basis of Regulation of von Willebrand Factor Binding to Glycoprotein Ib. Journal of Biological Chemistry, 2014, 289, 5565-5579.	1.6	62
176	Purified lymphocyte function-associated antigen-3 and T11 target structure are active in CD2-mediated T cell stimulation. European Journal of Immunology, 1987, 17, 1847-1850.	1.6	61
177	Activation of integrin Â-subunit I-like domains by one-turn C-terminal Â-helix deletions. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2333-2338.	3.3	61
178	Contribution of N-Linked Glycans to the Conformation and Function of Intercellular Adhesion Molecules (ICAMs). Journal of Biological Chemistry, 2005, 280, 5854-5861.	1.6	61
179	Highly reinforced structure of a C-terminal dimerization domain in von Willebrand factor. Blood, 2014, 123, 1785-1793.	0.6	60
180	The integrin Â-subunit leg extends at a Ca2+-dependent epitope in the thigh/genu interface upon activation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15422-15427.	3.3	59

#	Article	IF	CITATIONS
181	Stabilizing the integrin ÂM inserted domain in alternative conformations with a range of engineered disulfide bonds. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16737-16741.	3.3	58
182	L-Selectin Ligands That Are O-glycoprotease Resistant and Distinct from MECA-79 Antigen are Sufficient for Tethering and Rolling of Lymphocytes on Human High Endothelial Venules. Journal of Cell Biology, 1998, 140, 721-731.	2.3	57
183	Maturation decreases responsiveness of human bone marrow B lineage cells to stromal-derived factor 1 (SDF-1). Journal of Leukocyte Biology, 1999, 66, 667-673.	1.5	57
184	Regulation of outside-in signaling and affinity by the beta2 I domain of integrin ÂLbeta2. Proceedings of the United States of America, 2006, 103, 13062-13067.	3.3	57
185	Carbon nanotube-assisted optical activation of TGF-β signalling by near-infrared light. Nature Nanotechnology, 2015, 10, 465-471.	15.6	57
186	The Structure of the β-Propeller Domain and C-terminal Region of the Integrin αM Subunit. Journal of Biological Chemistry, 1998, 273, 15138-15147.	1.6	55
187	The von Willebrand factor D′D3 assembly and structural principles for factor VIII binding and concatemer biogenesis. Blood, 2019, 133, 1523-1533.	0.6	55
188	Cardiac Graft Intercellular Adhesion Molecule-1 (ICAM-1) and Interleukin-1 Expression Mediate Primary Isograft Failure and Induction of ICAM-1 in Organs Remote From the Site of Transplantation. Circulation Research, 1998, 82, 762-772.	2.0	54
189	Amino Acid Residues in the PSI Domain and Cysteine-rich Repeats of the Integrin β2 Subunit That Restrain Activation of the Integrin αxβ2. Journal of Biological Chemistry, 2001, 276, 6922-6929.	1.6	53
190	Rational Design of Intercellular Adhesion Molecule-1 (ICAM-1) Variants for Antagonizing Integrin Lymphocyte Function-associated Antigen-1-dependent Adhesion. Journal of Biological Chemistry, 2006, 281, 5042-5049.	1.6	52
191	Boca-dependent maturation of \hat{l}^2 -propeller/EGF modules in low-density lipoprotein receptor proteins. EMBO Journal, 2004, 23, 1372-1380.	3.5	51
192	AL-57, a ligand-mimetic antibody to integrin LFA-1, reveals chemokine-induced affinity up-regulation in lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13991-13996.	3.3	51
193	Tests of the Extension and Deadbolt Models of Integrin Activation. Journal of Biological Chemistry, 2007, 282, 11914-11920.	1.6	50
194	Cytoskeletal perturbation leads to platelet dysfunction and thrombocytopenia in variant forms of Glanzmann thrombasthenia. Haematologica, 2016, 101, 46-56.	1.7	50
195	Intercellular adhesion molecules (ICAM)-1 ICAM-2 and ICAM-3 function as counter-receptors for lymphocyte function-associated molecule 1 in human immunodeficiency virus-mediated syncytia formation. European Journal of Immunology, 1994, 24, 2191-2195.	1.6	49
196	Molecular basis for complement recognition by integrin α _X β ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4586-4591.	3.3	49
197	Calcium stabilizes the von Willebrand factor A2 domain by promoting refolding. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3742-3747.	3.3	48
198	A novel calcium-binding site of von Willebrand factor A2 domain regulates its cleavage by ADAMTS13. Blood, 2011, 117, 4623-4631.	0.6	47

#	Article	IF	CITATIONS
199	Distinct recognition of complement iC3b by integrins α _X β ₂ and α _M β ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3403-3408.	3.3	47
200	Measuring Integrin Conformational Change on the Cell Surface with Super-Resolution Microscopy. Cell Reports, 2018, 22, 1903-1912.	2.9	47
201	Energy landscape differences among integrins establish the framework for understanding activation. Journal of Cell Biology, 2018, 217, 397-412.	2.3	47
202	Activation-induced Conformational Changes in the I Domain Region of Lymphocyte Function-associated Antigen 1. Journal of Biological Chemistry, 2002, 277, 10638-10641.	1.6	46
203	Localization of the Binding Site on Intercellular Adhesion Molecule-3 (ICAM-3) for Lymphocyte Function-associated Antigen 1 (LFA-1). Journal of Biological Chemistry, 1996, 271, 23920-23927.	1.6	45
204	Therapeutic Antagonists and the Conformational Regulation of the β2 Integrins. Current Topics in Medicinal Chemistry, 2004, 4, 1485-1495.	1.0	45
205	Intercellular adhesion molecule-1 (ICAM-1) is involved in the cytolytic T lymphocyte interaction with a human synovial cell line. Journal of Cellular Physiology, 1988, 137, 173-178.	2.0	43
206	The Relative Influence of Metal Ion Binding Sites in the I-like Domain and the Interface with the Hybrid Domain on Rolling and Firm Adhesion by Integrin α4β7. Journal of Biological Chemistry, 2004, 279, 55556-55561.	1.6	43
207	Binding between the Integrin αXβ2 (CD11c/CD18) and Heparin. Journal of Biological Chemistry, 2007, 282, 30869-30877.	1.6	43
208	An Unusual Allosteric Mobility of the C-Terminal Helix of a High-Affinity αL Integrin I Domain Variant Bound to ICAM-5. Molecular Cell, 2008, 31, 432-437.	4.5	43
209	Leukocyte integrin α _L β ₂ headpiece structures: The αI domain, the pocket for the internal ligand, and concerted movements of its loops. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2940-2945.	3.3	43
210	Molecular Basis for Interaction between Icap1α PTB Domain and β1 Integrin. Journal of Biological Chemistry, 2002, 277, 8140-8145.	1.6	42
211	The Binding Sites for Competitive Antagonistic, Allosteric Antagonistic, and Agonistic Antibodies to the I Domain of Integrin LFA-1. Journal of Immunology, 2004, 173, 3972-3978.	0.4	42
212	Heterogenous glycosylation of ICAM-3 and lack of interaction with Mac-1 and p150,95. European Journal of Immunology, 1995, 25, 1008-1012.	1.6	40
213	Defining Extracellular Integrin α-Chain Sites That Affect Cell Adhesion and Adhesion Strengthening without Altering Soluble Ligand Binding. Molecular Biology of the Cell, 1997, 8, 2647-2657.	0.9	40
214	The RGD finger of Delâ€1 is a unique structural feature critical for integrin binding. FASEB Journal, 2012, 26, 3412-3420.	0.2	39
215	Structures of the <i>Toxoplasma</i> gliding motility adhesin. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4862-4867.	3.3	39
216	Fusion surface structure, function, and dynamics of gamete fusogen HAP2. ELife, 2018, 7, .	2.8	37

#	Article	IF	CITATIONS
217	A Small Molecule Agonist of an Integrin, αLβ2. Journal of Biological Chemistry, 2006, 281, 37904-37912.	1.6	36
218	Structural plasticity in Ig superfamily domain 4 of ICAM-1 mediates cell surface dimerization. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15358-15363.	3.3	35
219	Rationally Designed Integrin \hat{l}^2 3 Mutants Stabilized in the High Affinity Conformation. Journal of Biological Chemistry, 2009, 284, 3917-3924.	1.6	35
220	CDw50 and ICAM-3: Two names for the same molecule. European Journal of Immunology, 1993, 23, 1508-1512.	1.6	34
221	Predicted and experimental structures of integrins and β-propellers. Current Opinion in Structural Biology, 2002, 12, 802-813.	2.6	34
222	Force-induced on-rate switching and modulation by mutations in gain-of-function von Willebrand diseases. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4648-4653.	3.3	34
223	Atypical interactions of integrin αVβ8 with pro-TGF-β1. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4168-E4174.	3.3	34
224	Biochemical models of interferon-Î ³ -mediated macrophage activation: Independent regulation of lymphocyte function associated antigen (LFA)-1 and I-A antigen on murine peritoneal macrophages. Cellular Immunology, 1986, 97, 110-120.	1.4	32
225	Immunoprecipitation. Current Protocols in Molecular Biology, 1999, 48, Unit 10.16.	2.9	32
226	The Top of the Inserted-like Domain of the Integrin Lymphocyte Function-associated Antigen-1 β Subunit Contacts the α Subunit β-Propeller Domain near β-Sheet 3. Journal of Biological Chemistry, 2000, 275, 22202-22212.	1.6	32
227	Modulation of Integrin Activation by an Entropic Spring in the Î ² -Knee. Journal of Biological Chemistry, 2010, 285, 32954-32966.	1.6	32
228	Prodomain–growth factor swapping in the structure of pro-TGF-β1. Journal of Biological Chemistry, 2018, 293, 1579-1589.	1.6	31
229	Antigens associated with the activation of murine mononuclear phagocytes in vivo: Differential expression of lymphocyte function-associated antigen in the several stages of development. Cellular Immunology, 1985, 94, 265-275.	1.4	30
230	Expression of glycophosphatidylinositol-anchored and-non-anchored isoforms of vascular cell adhesion molecule 1 in murine stromal and endothelial cells. Journal of Leukocyte Biology, 1995, 57, 168-173.	1.5	28
231	β-Subunit Binding Is Sufficient for Ligands to Open the Integrin αIIbβ3 Headpiece. Journal of Biological Chemistry, 2016, 291, 4537-4546.	1.6	28
232	General structural features that regulate integrin affinity revealed by atypical αVβ8. Nature Communications, 2019, 10, 5481.	5.8	28
233	The Domain Structure of ICAM-1 and the Kinetics of Binding to Rhinovirus. Journal of Virology, 1998, 72, 6244-6246.	1.5	28
234	Cloning and chromosomal localization of a novel gene-encoding a human β2-integrin α subunit. Gene, 1996, 171, 291-294.	1.0	27

#	Article	IF	CITATIONS
235	Tolloid cleavage activates latent GDF8 by priming the proâ€complex for dissociation. EMBO Journal, 2018, 37, 384-397.	3.5	27
236	Immunoprecipitation. Current Protocols in Immunology, 2001, 41, Unit 8.3.	3.6	26
237	Structural basis for quinine-dependent antibody binding to platelet integrin αIIbβ3. Blood, 2015, 126, 2138-2145.	0.6	26
238	A Novel Ca2+ Binding β Hairpin Loop Better Resembles Integrin Sequence Motifs Than the EF Hand. Cell, 2000, 102, 275-277.	13.5	25
239	Characterization of a monoclonal rat anti-mouse interleukin 2 (IL-2) receptor antibody and its use in the biochemical characterization of the murine IL-2 receptor. Clinical Immunology and Immunopathology, 1985, 36, 18-29.	2.1	24
240	Characterization of two new CD18 alleles causing severe leukocyte adhesion deficiency. European Journal of Immunology, 1993, 23, 2792-2798.	1.6	24
241	A birth certificate for CD2. Nature, 1991, 353, 704-705.	13.7	23
242	Cation-ï€ interaction regulates ligand-binding affinity and signaling of integrin α ₄ β ₇ . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21388-21393.	3.3	23
243	Use of Murine CXCR-4 as a Second Receptor by Some T-Cell-Tropic Human Immunodeficiency Viruses. Journal of Virology, 1998, 72, 1652-1656.	1.5	23
244	Structural basis of activation-dependent binding of ligand-mimetic antibody AL-57 to integrin LFA-1. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18345-18350.	3.3	21
245	Ligand- and cation-induced structural alterations of the leukocyte integrin LFA-1. Journal of Biological Chemistry, 2018, 293, 6565-6577.	1.6	21
246	Mutational analysis of MAdCAM-1/α4β7 interactions reveals significant binding determinants in both the first and second immunoglobulin domains. Cell Adhesion and Communication, 1999, 7, 167-181.	1.7	20
247	Electrostatic Steering Enables Flow-Activated Von Willebrand Factor to Bind Platelet Glycoprotein, Revealed by Single-Molecule Stretching and Imaging. Journal of Molecular Biology, 2019, 431, 1380-1396.	2.0	20
248	Complement Receptor 3 Forms a Compact High-Affinity Complex with iC3b. Journal of Immunology, 2021, 206, 3032-3042.	0.4	20
249	Mechanisms by which von Willebrand Disease Mutations Destabilize the A2 Domain*. Journal of Biological Chemistry, 2013, 288, 6317-6324.	1.6	19
250	Evolutionarily distant I domains can functionally replace the essential ligand-binding domain of Plasmodium TRAP. ELife, 2020, 9, .	2.8	19
251	Tests of Integrin Transmembrane Domain Homo-oligomerization during Integrin Ligand Binding and Signaling. Journal of Biological Chemistry, 2011, 286, 1860-1867.	1.6	18
252	Cloning and expression of the chicken CD18 cDNA. Journal of Leukocyte Biology, 1994, 55, 501-506.	1.5	17

#	Article	IF	CITATIONS
253	A Schiff Base with Mildly Oxidized Carbohydrate Ligands Stabilizes L-selectin and not P-selectin or E-selectin Rolling Adhesions in Shear Flow. Journal of Biological Chemistry, 1996, 271, 5404-5413.	1.6	16
254	The Novel S527F Mutation in the Integrin β3 Chain Induces a High Affinity αIIbβ3 Receptor by Hindering Adoption of the Bent Conformation. Journal of Biological Chemistry, 2009, 284, 14914-14920.	1.6	16
255	Specific high affinity interaction of <i>HelicobacterÂpylori</i> CagL with integrin α _V β ₆ promotes type <scp>IV</scp> secretion of CagA into human cells. FEBS Journal, 2019, 286, 3980-3997.	2.2	16
256	A Tandem Mass Spectrometry Sequence Database Search Method for Identification of O-Fucosylated Proteins by Mass Spectrometry. Journal of Proteome Research, 2019, 18, 652-663.	1.8	16
257	Low-affinity integrin states have faster ligand-binding kinetics than the high-affinity state. ELife, 2021, 10, .	2.8	16
258	Identification and characterization of a human monoclonal antagonistic antibody AL-57 that preferentially binds the high-affinity form of lymphocyte function-associated antigen-1. Journal of Leukocyte Biology, 2006, 80, 905-914.	1.5	15
259	High integrin α _V β ₆ affinity reached by hybrid domain deletion slows ligand-binding on-rate. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1429-E1436.	3.3	14
260	Disulfide exchange in multimerization of von Willebrand factor and gel-forming mucins. Blood, 2021, 137, 1263-1267.	0.6	14
261	Immunoprecipitation. Current Protocols in Protein Science, 1999, 18, Unit 9.8.	2.8	13
262	High Affinity Ligand Binding by Integrins Does Not Involve Head Separation. Journal of Biological Chemistry, 2003, 278, 17185-17189.	1.6	13
263	Domain 1 of Mucosal Addressin Cell Adhesion Molecule Has an I1-set Fold and a Flexible Integrin-binding Loop. Journal of Biological Chemistry, 2013, 288, 6284-6294.	1.6	13
264	Design and assessment of TRAP-CSP fusion antigens as effective malaria vaccines. PLoS ONE, 2020, 15, e0216260.	1.1	13
265	CD11c regulates hematopoietic stem and progenitor cells under stress. Blood Advances, 2020, 4, 6086-6097.	2.5	13
266	Engineering of Single Ig Superfamily Domain of Intercellular Adhesion Molecule 1 (ICAM-1) for Native Fold and Function. Journal of Biological Chemistry, 2010, 285, 15906-15915.	1.6	12
267	The C-Terminal αl Domain Linker as a Critical Structural Element in the Conformational Activation of αl Integrins. Journal of Biological Chemistry, 2011, 286, 42115-42122.	1.6	12
268	[31] Preparation and use of monoclonal antimacrophage antibodies. Methods in Enzymology, 1984, 108, 313-324.	0.4	11
269	Regulation of Cell-Matrix Adhesion by Receptor Tyrosine Kinases. Leukemia and Lymphoma, 1995, 18, 203-208.	0.6	11
270	César Milstein, the father of modern immunology. Nature Immunology, 2002, 3, 501-503.	7.0	11

#	Article	IF	CITATIONS
271	Structures of VWF tubules before and after concatemerization reveal a mechanism of disulfide bond exchange. Blood, 2022, 140, 1419-1430.	0.6	10
272	[20] Production of Syrian and Armenian hamster monoclonal antibodies of defined specificity. Methods in Enzymology, 1986, 121, 239-244.	0.4	9
273	The LFA-1, Mac-1 leucocyte adhesion glycoprotein family and its deficiency in a heritable human disease. Biochemical Society Transactions, 1985, 13, 3-6.	1.6	8
274	Regulation of integrin $\hat{l}\pm5\hat{l}^21$ conformational states and intrinsic affinities by metal ions and the ADMIDAS. Molecular Biology of the Cell, 2022, 33, mbcE21110536.	0.9	8
275	Single-molecule imaging of von Willebrand factor reveals tension-dependent self-association. Blood, 2021, 138, 2425-2434.	0.6	8
276	Ideas crystallized on immunoglobulin superfamily-integrin interactions. Chemistry and Biology, 1995, 2, 639-643.	6.2	7
277	Activation of natural killer cells by the mAb YTA-1 that recognizes leukocyte function-associated antigen-1. International Immunology, 1995, 7, 763-769.	1.8	7
278	A high affinity human antibody antagonist of P-selectin mediated rolling. Biochemical and Biophysical Research Communications, 2006, 350, 508-513.	1.0	7
279	Sorting zebrafish thrombocyte lineage cells with a Cd41 monoclonal antibody enriches hematopoietic stem cell activity. Blood, 2017, 129, 1394-1397.	0.6	7
280	Dendritic cell-expressed common gamma-chain recruits IL-15 for trans-presentation at the murine immunological synapse. Wellcome Open Research, 2018, 3, 84.	0.9	7
281	Loss of LRRC33-Dependent TGFβ1 Activation Enhances Antitumor Immunity and Checkpoint Blockade Therapy. Cancer Immunology Research, 2022, 10, 453-467.	1.6	7
282	Structural basis of malaria transmission blockade by a monoclonal antibody to gamete fusogen HAP2. ELife, 2021, 10, .	2.8	7
283	Quantitation of light chain synthesis in myeloma × spleen cell hybrids and identification of myeloma chain loss variants using radioimmunoassay. Journal of Immunological Methods, 1980, 37, 139-152.	0.6	6
284	[11] Quantitation of hybridoma immunoglobulins and selection of light-chain loss variants. Methods in Enzymology, 1983, 92, 147-160.	0.4	6
285	Dendritic cell-expressed common gamma-chain recruits IL-15 for trans-presentation at the murine immunological synapse. Wellcome Open Research, 2018, 3, 84.	0.9	4
286	The next cluster of differentiation (CD) workshop. Nature, 1991, 354, 415-416.	13.7	3
287	Von Willebrand factor A1 domain stability and affinity for GPIbÎ \pm are differentially regulated by its O-glycosylated N- and C-linker. ELife, 2022, 11, .	2.8	3
288	IMMUNOLOGY: Retrospective: Cesar Milstein (1927-2002). Science, 2002, 296, 1253-1253.	6.0	2

#	Article	IF	CITATIONS
289	Structural, Functional, and Dynamic Characterization of the Binding Site of RUC-1, a Novel αIIb-Specific Inhibitor of Integrin αIIbβ3 Blood, 2009, 114, 151-151.	0.6	2
290	Protection of the Prodomain α1-Helix Correlates with Latency in the Transforming Growth Factor-β Family. Journal of Molecular Biology, 2022, 434, 167439.	2.0	2
291	A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1. J. Immunol. 1986. 137: 1270-1274. Journal of Immunology, 2011, 186, 5034-8.	0.4	2
292	Monomeric prefusion structure of an extremophile gamete fusogen and stepwise formation of the postfusion trimeric state. Nature Communications, 2022, 13, .	5.8	2
293	Immunoaffinity Chromatography. Current Protocols in Molecular Biology, 1996, 36, Unit 10.11A.	2.9	1
294	The chemokine receptor CXCR3 mediates rapid and shear-resistant adhesion-induction of effector T lymphocytes by the chemokines IP10 and Mig. , 1998, 28, 961.		1
295	Congenital Xâ€linked Neutropenia with Myelodysplasia and Somatic Tetraploidy due to a Germline Mutation in SEPT6. American Journal of Hematology, 2021, , .	2.0	1
296	Fc receptors and the action of antibodies. Cell, 1991, 64, 679-680.	13.5	0
297	Immunoaffinity Chromatography. Current Protocols in Immunology, 1996, 18, Unit 8.2.	3.6	Ο
298	Nonmuscle myosin heavy chain IIA mediates integrin LFA-1 de-adhesion during T lymphocyte migration. Journal of Experimental Medicine, 2008, 205, 993-993.	4.2	0
299	Von Willebrand Factor, a Force-Selective Platelet Binder and Factor VIII Carrier. Biophysical Journal, 2018, 114, 338a.	0.2	0
300	Integrin-Dependent Difference in Cell Adhesion and Force Exertion. Biophysical Journal, 2020, 118, 96a.	0.2	0
301	RIAM, a New Rap1 Effector, Functions Downstream of Rap1 and Regulates Rap1 Localization at the Plasma Membrane and Rap1-Induced Adhesion Blood, 2004, 104, 510-510.	0.6	0
302	Crystal Structure of the Integrin αIIBβ3 Headpiece at 2.7–3.1 Å: Structure, Mechanisms of Activation and Ligand Binding, Inhibition by Eptifibatide, Tirofiban, and mAb 10E5, and Structure of the HPA-1 Alloantigen Epitope Blood, 2004, 104, 327-327.	0.6	0
303	A Small-Molecule Antagonist to Integrin LFA-1 Reveals a Crucial Inter-Domain Communication as a Novel Therapeutic Target Blood, 2004, 104, 650-650.	0.6	0
304	Structureâ€function of MAdCAMâ€1 revealed by singleâ€molecule force spectroscopy. FASEB Journal, 2006, 20, LB119.	0.2	0
305	TESTS OF INTEGRIN TRANSMEMBRANE DOMAIN HOMOâ€OLIGOMERIZATION DURING INTEGRIN LIGAND BINDING AND SIGNALING. FASEB Journal, 2011, 25, 961.5.	0.2	0
306	Structure-Guided Design of A Novel High Affinity Integrin αllbβ3 Receptor Antagonist (RUC-2) That Displaces Mg2+ From the β3 MIDAS,. Blood, 2011, 118, 3255-3255.	0.6	0

#	Article	IF	CITATIONS
307	Activation of A1 Domain Adhesiveness in von Willebrand Factor by Elongational Force. Blood, 2012, 120, SCI-16-SCI-16.	0.6	0
308	Molecular analysis of human leukocyte adhesion deficiency Japanese Journal of Clinical Immunology, 1988, 11, 428-434.	0.0	0
309	Congenital X-Linked Myelodysplasia with Tetraploidy Is Associated with De Novo Germline C-Terminal Mutation of SEPT6, a Septin Filament Protein. Blood, 2018, 132, 644-644.	0.6	0