Toshio Yamagata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7787510/publications.pdf Version: 2024-02-01

		10389	11308
188	20,145	72	136
papers	citations	h-index	g-index
191	191	191	9286
all docs	docs citations	times ranked	citing authors

Τοςμίο Υλμλάλτλ

#	Article	IF	CITATIONS
1	El Ni $ ilde{A}$ ±o Modoki and its possible teleconnection. Journal of Geophysical Research, 2007, 112, .	3.3	2,115
2	Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO. Geophysical Research Letters, 2001, 28, 4499-4502.	4.0	862
3	ENSO theory. Journal of Geophysical Research, 1998, 103, 14261-14290.	3.3	809
4	Individual and Combined Influences of ENSO and the Indian Ocean Dipole on the Indian Summer Monsoon. Journal of Climate, 2004, 17, 3141-3155.	3.2	510
5	Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Climate Dynamics, 2007, 29, 113-129.	3.8	478
6	Subtropical SST dipole events in the southern Indian Ocean. Geophysical Research Letters, 2001, 28, 327-330.	4.0	397
7	Influence of the Indian Ocean Dipole on the Australian winter rainfall. Geophysical Research Letters, 2003, 30, .	4.0	392
8	Influence of the state of the Indian Ocean Dipole on the following year's El Niño. Nature Geoscience, 2010, 3, 168-172.	12.9	372
9	The El Niño with a difference. Nature, 2009, 461, 481-484.	27.8	350
10	Paramount Impact of the Indian Ocean Dipole on the East African Short Rains: A CGCM Study. Journal of Climate, 2005, 18, 4514-4530.	3.2	344
11	Can Luzon Strait Transport Play a Role in Conveying the Impact of ENSO to the South China Sea?*. Journal of Climate, 2004, 17, 3644-3657.	3.2	317
12	Anomalous winter climate conditions in the Pacific rim during recent El Niño Modoki and El Niño events. Climate Dynamics, 2009, 32, 663-674.	3.8	311
13	Interannual subsurface variability in the tropical Indian Ocean with a special emphasis on the Indian Ocean Dipole. Deep-Sea Research Part II: Topical Studies in Oceanography, 2002, 49, 1549-1572.	1.4	296
14	Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming. Nature, 2014, 510, 254-258.	27.8	296
15	Intrusion of the North Pacific waters into the South China Sea. Journal of Geophysical Research, 2000, 105, 6415-6424.	3.3	290
16	A CGCM Study on the Interaction between IOD and ENSO. Journal of Climate, 2006, 19, 1688-1705.	3.2	288
17	The unusual summer of 1994 in East Asia: IOD teleconnections. Geophysical Research Letters, 2003, 30, n/a-n/a.	4.0	275
18	Interaction between El Niño and Extreme Indian Ocean Dipole. Journal of Climate, 2010, 23, 726-742.	3.2	274

#	Article	IF	CITATIONS
19	Impacts of El Niño Southern Oscillation on the global yields of major crops. Nature Communications, 2014, 5, 3712.	12.8	273
20	The Kuroshio Onshore Intrusion along the Shelf Break of the East China Sea: The Origin of the Tsushima Warm Current. Journal of Physical Oceanography, 2006, 36, 2205-2231.	1.7	249
21	Seasonal Climate Predictability in a Coupled OAGCM Using a Different Approach for Ensemble Forecasts. Journal of Climate, 2005, 18, 4474-4497.	3.2	246
22	Extended ENSO Predictions Using a Fully Coupled Ocean–Atmosphere Model. Journal of Climate, 2008, 21, 84-93.	3.2	240
23	A Look at the Relationship between the ENSO and the Indian Ocean Dipole Journal of the Meteorological Society of Japan, 2003, 81, 41-56.	1.8	225
24	The Role of the Western Arabian Sea Upwelling in Indian Monsoon Rainfall Variability. Journal of Climate, 2008, 21, 5603-5623.	3.2	220
25	Coupled Ocean-Atmosphere Variability in the Tropical Indian Ocean. Geophysical Monograph Series, 0, , 189-211.	0.1	218
26	Reducing Climatology Bias in an Ocean–Atmosphere CGCM with Improved Coupling Physics. Journal of Climate, 2005, 18, 2344-2360.	3.2	201
27	Projected response of the Indian Ocean Dipole to greenhouse warming. Nature Geoscience, 2013, 6, 999-1007.	12.9	201
28	Influence of the Indian Ocean Dipole on the Southern Oscillation Journal of the Meteorological Society of Japan, 2003, 81, 169-177.	1.8	193
29	Intensification of decadal and multi-decadal sea level variability in the western tropical Pacific during recent decades. Climate Dynamics, 2014, 43, 1357-1379.	3.8	173
30	An introduction to the South China Sea throughflow: Its dynamics, variability, and application for climate. Dynamics of Atmospheres and Oceans, 2009, 47, 3-14.	1.8	171
31	Experimental Forecasts of the Indian Ocean Dipole Using a Coupled OAGCM. Journal of Climate, 2007, 20, 2178-2190.	3.2	169
32	The Indian Ocean dipole ? the unsung driver of climatic variability in East Africa. African Journal of Ecology, 2007, 45, 4-16.	0.9	169
33	Response of the equatorial Indian Ocean to an unusual wind event during 1994. Geophysical Research Letters, 1999, 26, 1613-1616.	4.0	167
34	Intrusion of the Southwest Monsoon Current into the Bay of Bengal. Journal of Geophysical Research, 1999, 104, 11077-11085.	3.3	167
35	Monsoon Response of the Sea around Sri Lanka: Generation of Thermal Domesand Anticyclonic Vortices. Journal of Physical Oceanography, 1998, 28, 1946-1960.	1.7	165
36	Pacific low-latitude western boundary currents and the Indonesian throughflow. Journal of Geophysical Research, 1996, 101, 12209-12216.	3.3	159

Τοςηίο Υλμασατά

#	Article	IF	CITATIONS
37	On the western boundary currents in the Philippine Sea. Journal of Geophysical Research, 1998, 103, 7537-7548.	3.3	153
38	Indian Ocean dipole mode events in an ocean general circulation model. Deep-Sea Research Part II: Topical Studies in Oceanography, 2002, 49, 1573-1596.	1.4	146
39	Prediction of seasonal climate-induced variations in global food production. Nature Climate Change, 2013, 3, 904-908.	18.8	143
40	Successful prediction of the consecutive IOD in 2006 and 2007. Geophysical Research Letters, 2008, 35, .	4.0	136
41	The Indian Ocean SST dipole simulated in a coupled general circulation model. Geophysical Research Letters, 2000, 27, 3369-3372.	4.0	135
42	Anatomy of Indian heatwaves. Scientific Reports, 2016, 6, 24395.	3.3	135
43	A Triply Nested Ocean Model for Simulating the Kuroshio—Roles of Horizontal Resolution on JEBAR. Journal of Physical Oceanography, 2003, 33, 146-169.	1.7	131
44	A Climatology of the Circulation and Water Mass Distribution near the Philippine Coast*. Journal of Physical Oceanography, 1999, 29, 1488-1505.	1.7	130
45	South Pacific origin of the decadal ENSO-like variation as simulated by a coupled GCM. Geophysical Research Letters, 2003, 30, .	4.0	126
46	Decadal variability of the Indian Ocean dipole. Geophysical Research Letters, 2004, 31, .	4.0	125
47	Impact of intra-daily SST variability on ENSO characteristics in a coupled model. Climate Dynamics, 2012, 39, 681-707.	3.8	117
48	Long-term El Niño-Southern Oscillation (ENSO)-like variation with special emphasis on the South Pacific. Journal of Geophysical Research, 2001, 106, 22211-22227.	3.3	116
49	Role of the ENSO–Indian Ocean coupling on ENSO variability in a coupled GCM. Geophysical Research Letters, 2006, 33, .	4.0	112
50	On the Ningaloo Niño/Niña. Climate Dynamics, 2014, 43, 1463-1482.	3.8	112
51	Indian Ocean Dipole influence on South American rainfall. Geophysical Research Letters, 2008, 35, .	4.0	110
52	Comments on "Dipoles, Temperature Gradients, and Tropical Climate Anomalies― Bulletin of the American Meteorological Society, 2003, 84, 1418-1422.	3.3	106
53	Modulation of Sri LankanMaharainfall by the Indian Ocean Dipole. Geophysical Research Letters, 2003, 30, .	4.0	103
54	Influence of Indian Ocean Dipole and Pacific recharge on following year's El Niño: interdecadal robustness. Climate Dynamics, 2014, 42, 291-310.	3.8	101

#	Article	IF	CITATIONS
55	Seasonal Variation of the Seychelles Dome. Journal of Climate, 2008, 21, 3740-3754.	3.2	100
56	Decadal Modulations of the Indian Ocean Dipole in the SINTEX-F1 Coupled GCM. Journal of Climate, 2007, 20, 2881-2894.	3.2	97
57	Predictability of Northwest Pacific climate during summer and the role of the tropical Indian Ocean. Climate Dynamics, 2011, 36, 607-621.	3.8	97
58	Roles of Mesoscale Eddies in the Kuroshio Paths. Journal of Physical Oceanography, 2004, 34, 2203-2222.	1.7	96
59	Summertime Response of the Tropical Atmosphere to the Indian Ocean Dipole Sea Surface Temperature Anomalies. Journal of the Meteorological Society of Japan, 2003, 81, 533-561.	1.8	95
60	Dramatic impact of the South China Sea on the Indonesian Throughflow. Geophysical Research Letters, 2007, 34, .	4.0	95
61	Simulated Multiscale Variations in the Western Tropical Pacific: The Mindanao Dome Revisited. Journal of Physical Oceanography, 2002, 32, 1338-1359.	1.7	93
62	Seasonal Transport Variations of the Kuroshio: An OGCM Simulation. Journal of Physical Oceanography, 1997, 27, 403-418.	1.7	91
63	Impacts of ENSO and Indian Ocean Dipole Events on the Southern Hemisphere Storm-Track Activity during Austral Winter. Journal of Climate, 2007, 20, 3147-3163.	3.2	88
64	Diagnosis of Tropospheric Moisture over Saudi Arabia and Influences of IOD and ENSO. Monthly Weather Review, 2006, 134, 598-617.	1.4	87
65	Impacts of the South China Sea Throughflow on seasonal and interannual variations of the Indonesian Throughflow. Dynamics of Atmospheres and Oceans, 2009, 47, 73-85.	1.8	87
66	On the triggering of Benguela Niños: Remote equatorial versus local influences. Geophysical Research Letters, 2010, 37, .	4.0	86
67	Anomalous summer climate in China influenced by the tropical Indo-Pacific Oceans. Climate Dynamics, 2011, 36, 769-782.	3.8	86
68	Predictability of the Super IOD Event in 2019 and Its Link With El Niño Modoki. Geophysical Research Letters, 2020, 47, e2019GL086713.	4.0	86
69	Indian Ocean subtropical dipole simulated using a coupled general circulation model. Journal of Geophysical Research, 2004, 109, .	3.3	85
70	Seasonal variations of the Indonesian throughflow in a general ocean circulation model. Journal of Geophysical Research, 1996, 101, 12287-12293.	3.3	84
71	Inter-basin sources for two-year predictability of the multi-year La Niña event in 2010–2012. Scientific Reports, 2017, 7, 2276.	3.3	80
72	Why were cool SST anomalies absent in the Bay of Bengal during the 1997 Indian Ocean Dipole Event?. Geophysical Research Letters, 2002, 29, 50-1.	4.0	79

#	Article	IF	CITATIONS
73	Climate variability in the southern Indian Ocean as revealed by self-organizing maps. Climate Dynamics, 2010, 35, 1059-1072.	3.8	79
74	Opposite response of strong and moderate positive Indian Ocean Dipole to global warming. Nature Climate Change, 2021, 11, 27-32.	18.8	79
75	Comments on "A Cautionary Note on the Interpretation of EOFs― Journal of Climate, 2003, 16, 1087-1093.	3.2	78
76	Intraseasonal Kelvin waves along the southern coast of Sumatra and Java. Journal of Geophysical Research, 2005, 110, .	3.3	74
77	Impacts of IOD, ENSO and ENSO Modoki on the Australian Winter Wheat Yields in Recent Decades. Scientific Reports, 2015, 5, 17252.	3.3	73
78	On the Growth and Decay of the Subtropical Dipole Mode in the South Atlantic. Journal of Climate, 2011, 24, 5538-5554.	3.2	71
79	The Atlantic Meridional Mode and Its Coupled Variability with the Guinea Dome. Journal of Climate, 2010, 23, 455-475.	3.2	70
80	Improved Prediction of the Indian Ocean Dipole Mode by Use of Subsurface Ocean Observations. Journal of Climate, 2017, 30, 7953-7970.	3.2	70
81	Unusual IOD event of 2007. Geophysical Research Letters, 2008, 35, .	4.0	68
82	Seasonal variations in the equatorial Indian Ocean and their impact on the Lombok throughflow. Journal of Geophysical Research, 1996, 101, 12465-12473.	3.3	65
83	The Influence of Tropical Indian Ocean SST on the Indian Summer Monsoon. Journal of Climate, 2007, 20, 3083-3105.	3.2	65
84	Generation and termination of Indian Ocean dipole events in 2003, 2006 and 2007. Climate Dynamics, 2009, 33, 751-767.	3.8	65
85	Improved seasonal prediction using the <scp>S</scp> INTEXâ€F2 coupled model. Journal of Advances in Modeling Earth Systems, 2016, 8, 1847-1867.	3.8	65
86	Influence of Indian Ocean Dipole on Poleward Propagation of Boreal Summer Intraseasonal Oscillations. Journal of Climate, 2008, 21, 5437-5454.	3.2	63
87	On the Evolution of Nonlinear Planetary Eddies Larger than the Radius of Deformation. Journal of Physical Oceanography, 1982, 12, 440-456.	1.7	61
88	Locally and remotely forced atmospheric circulation anomalies of Ningaloo Niño/Niña. Climate Dynamics, 2014, 43, 2197-2205.	3.8	60
89	Respective influences of IOD and ENSO on the Tibetan snow cover in early winter. Climate Dynamics, 2009, 33, 509-520.	3.8	57
90	Climate Based Predictability of Oil Palm Tree Yield in Malaysia. Scientific Reports, 2018, 8, 2271.	3.3	57

#	Article	IF	CITATIONS
91	Subtropical Dipole Modes Simulated in a Coupled General Circulation Model. Journal of Climate, 2012, 25, 4029-4047.	3.2	54
92	IOD and ENSO impacts on the extreme stream-flows of Citarum river in Indonesia. Climate Dynamics, 2012, 39, 1673-1680.	3.8	54
93	A Simple Diagnostic Model for the 30-50 Day Oscillation in the Tropics. Journal of the Meteorological Society of Japan, 1984, 62, 709-717.	1.8	53
94	A subsurface countercurrent along the east coast of Luzon. Deep-Sea Research Part I: Oceanographic Research Papers, 1997, 44, 413-423.	1.4	53
95	Mode shift in the Indian Ocean climate under global warming stress. Geophysical Research Letters, 2009, 36, .	4.0	53
96	Impact of Mascarene High variability on the East African â€̃short rains'. Climate Dynamics, 2014, 42, 1259-1274.	3.8	53
97	Stabilised frequency of extreme positive Indian Ocean Dipole under 1.5 °C warming. Nature Communications, 2018, 9, 1419.	12.8	51
98	Impact of salinity on the 1997 Indian Ocean dipole event in a numerical experiment. Journal of Geophysical Research, 2004, 109, .	3.3	50
99	Interannual variability of the Kuroshio Extension and its relation to the Southern Oscillation/El Niño. Journal of the Oceanographical Society of Japan, 1985, 41, 274-281.	0.3	48
100	An index for tropical temperate troughs over southern Africa. Climate Dynamics, 2013, 41, 421-441.	3.8	46
101	A modeling study of interannual variations of the Seychelles Dome. Journal of Geophysical Research, 2010, 115, .	3.3	45
102	Predictability of the Ningaloo Niño/Niña. Scientific Reports, 2013, 3, 2892.	3.3	45
103	CURRENT STATUS OF INTRASEASONAL–SEASONAL-TO-INTERANNUAL PREDICTION OF THE INDO-PACIFIC CLIMATE. World Scientific Series on Asia-Pacific Weather and Climate, 2016, , 63-107.	0.2	45
104	Ensemble forecast of the Kuroshio meandering. Journal of Geophysical Research, 2005, 110, .	3.3	44
105	Simulated seasonal circulation in the Indonesian Seas. Journal of Geophysical Research, 1993, 98, 12501-12509.	3.3	43
106	Intraseasonal variations of surface and subsurface currents off Java as simulated in a high-resolution ocean general circulation model. Journal of Geophysical Research, 2006, 111, .	3.3	43
107	The role of the intra-daily SST variability in the Indian monsoon variability and monsoon-ENSO–IOD relationships in a global coupled model. Climate Dynamics, 2012, 39, 729-754.	3.8	42
108	An interdecadal regime shift in rainfall predictability related to the Ningaloo Niño in the late 1990s. Journal of Geophysical Research: Oceans, 2015, 120, 1388-1396.	2.6	42

#	Article	IF	CITATIONS
109	Generation and Decay Mechanisms of Ningaloo Niño/Niña. Journal of Geophysical Research: Oceans, 2017, 122, 8913-8932.	2.6	42
110	Impacts of Indian Ocean SST biases on the Indian Monsoon: as simulated in a global coupled model. Climate Dynamics, 2014, 42, 271-290.	3.8	41
111	A Unique Feature of the 2019 Extreme Positive Indian Ocean Dipole Event. Geophysical Research Letters, 2020, 47, e2020GL088615.	4.0	40
112	Tropical Indian Ocean variability revealed by self-organizing maps. Climate Dynamics, 2008, 31, 333-343.	3.8	39
113	Annual ENSO. Journal of Physical Oceanography, 2003, 33, 1564-1578.	1.7	38
114	A Regional Climate Mode Discovered in the North Atlantic: Dakar Niño/Niña. Scientific Reports, 2016, 6, 18782.	3.3	38
115	Interannual variability of the Guinea Dome and its possible link with the Atlantic Meridional Mode. Climate Dynamics, 2009, 33, 985-998.	3.8	37
116	Indian Ocean Dipole index recorded in Kenyan coral annual density bands. Geophysical Research Letters, 2006, 33, .	4.0	36
117	Low and high frequency Madden–Julian oscillations in austral summer: interannual variations. Climate Dynamics, 2010, 35, 669-683.	3.8	36
118	Merits of a 108-Member Ensemble System in ENSO and IOD Predictions. Journal of Climate, 2019, 32, 957-972.	3.2	36
119	Seasonal and Interannual Variations of the SST above the Seychelles Dome. Journal of Climate, 2012, 25, 800-814.	3.2	34
120	IOD influence on the early winter tibetan plateau snow cover: diagnostic analyses and an AGCM simulation. Climate Dynamics, 2012, 39, 1643-1660.	3.8	34
121	The interannual precipitation variability in the southern part of Iran as linked to large-scale climate modes. Climate Dynamics, 2012, 39, 2329-2341.	3.8	34
122	Can Ningaloo Niño/Niña Develop Without El Niño–Southern Oscillation?. Geophysical Research Letters, 2018, 45, 7040-7048.	4.0	33
123	Interdecadal Natural Climate Variability in the Western Pacific and its Implication in Global Warming. Journal of the Meteorological Society of Japan, 1992, 70, 167-175.	1.8	31
124	Seasonal and Interannual Variations of Oceanic Conditions in the Angola Dome. Journal of Physical Oceanography, 2007, 37, 2698-2713.	1.7	31
125	Impact of Clobal Ocean Surface Warming on Seasonal-to-Interannual Climate Prediction. Journal of Climate, 2011, 24, 1626-1646.	3.2	31
126	How is the Indian Ocean Subtropical Dipole excited?. Climate Dynamics, 2013, 41, 1955-1968.	3.8	31

#	Article	IF	CITATIONS
127	On nonlinear planetary waves: A class of solutions missed by the traditional quasi-geostrophic approximation. Journal of the Oceanographical Society of Japan, 1982, 38, 236-244.	0.3	30
128	Imprint of the El Niño Modoki on decadal sea level changes. Geophysical Research Letters, 2010, 37, .	4.0	30
129	Poleward propagation of boreal summer intraseasonal oscillations in a coupled model: role of internal processes. Climate Dynamics, 2011, 37, 851-867.	3.8	30
130	California Niño/Niña. Scientific Reports, 2014, 4, 4801.	3.3	30
131	Termination of Indian Ocean Dipole Events in a Coupled General Circulation Model. Journal of Climate, 2007, 20, 3018-3035.	3.2	29
132	A Simple Moist Model Relevant to the Origin of Intraseasonal Disturbances in the Tropics. Journal of the Meteorological Society of Japan, 1987, 65, 153-165.	1.8	28
133	Key factors in simulating the equatorial Atlantic zonal sea surface temperature gradient in a coupled general circulation model. Journal of Geophysical Research, 2011, 116, .	3.3	28
134	Predictability of the subtropical dipole modes in a coupled ocean–atmosphere model. Climate Dynamics, 2014, 42, 1291-1308.	3.8	27
135	Dynamical seasonal prediction of Southern African summer precipitation. Climate Dynamics, 2014, 42, 3357-3374.	3.8	27
136	Wintertime Impacts of the 2019 Super IOD on East Asia. Geophysical Research Letters, 2020, 47, e2020GL089456.	4.0	27
137	A Numerical Simulation Study of the Indian Summer Monsoon of 1994 using NCAR MM5. Journal of the Meteorological Society of Japan, 2004, 82, 1755-1775.	1.8	27
138	Probabilistic prediction of Indian summer monsoon rainfall using global climate models. Theoretical and Applied Climatology, 2012, 107, 441-450.	2.8	26
139	The Stability, Modulation and Long Wave Resonance of a Planetary Wave in a Rotating, Two-Layer Fluid on a Channel Beta-Planet. Journal of the Meteorological Society of Japan, 1980, 58, 160-171.	1.8	25
140	The role of damped equatorial waves in the oceanic response to winds. Journal of the Oceanographical Society of Japan, 1985, 41, 345-357.	0.3	24
141	Seasonal transport variations of the wind-driven ocean circulation in a two-layer planetary geostrophic model with a continental slope. Journal of Marine Research, 1996, 54, 261-284.	0.3	24
142	Relative importance of the processes contributing to the development of SST anomalies in the eastern pole of the Indian Ocean Dipole and its implication for predictability. Climate Dynamics, 2017, 49, 1289-1304.	3.8	24
143	Longitudinal biases in the Seychelles Dome simulated by 35 oceanâ€atmosphere coupled general circulation models. Journal of Geophysical Research: Oceans, 2013, 118, 831-846.	2.6	23
144	Interhemispheric oscillations in the surface air pressure field. Geophysical Research Letters, 2001, 28, 263-266.	4.0	22

#	Article	IF	CITATIONS
145	Assessment of the longâ€lead probabilistic prediction for the Asian summer monsoon precipitation (1983–2011) based on the APCC multimodel system and a statistical model. Journal of Geophysical Research, 2012, 117, .	3.3	22
146	Impact of Indian Ocean Dipole on intraseasonal zonal currents at 90°E on the equator as revealed by selfâ€organizing map. Geophysical Research Letters, 2008, 35, .	4.0	21
147	On the Origin of a Model ENSO in the Western Pacific. Journal of the Meteorological Society of Japan, 1991, 69, 197-207.	1.8	20
148	El Niño Modoki connection to extremely-low streamflow of the ParanaÃba River in Brazil. Climate Dynamics, 2014, 42, 1509-1516.	3.8	20
149	Influence of Indian Ocean Dipole on boreal summer intraseasonal oscillations in a coupled general circulation model. Journal of Geophysical Research, 2009, 114, .	3.3	19
150	Anomalous Walker circulations associated with two flavors of the Indian Ocean Dipole. Geophysical Research Letters, 2016, 43, 5378-5384.	4.0	19
151	Seasonal Variations of the Seychelles Dome Simulated in the CMIP3 Models. Journal of Physical Oceanography, 2009, 39, 449-457.	1.7	18
152	Characteristics of coastal trapped waves along the southern and eastern coasts of Australia. Journal of Oceanography, 2010, 66, 243-258.	1.7	18
153	Influence of the Reflected Rossby Waves on the Western Arabian Sea Upwelling Region. Journal of Physical Oceanography, 2014, 44, 1424-1438.	1.7	18
154	Influences of the <scp>MJO</scp> on intraseasonal rainfall variability over southern Iran. Atmospheric Science Letters, 2015, 16, 110-118.	1.9	18
155	More-frequent extreme northward shifts of eastern Indian Ocean tropical convergence under greenhouse warming. Scientific Reports, 2014, 4, 6087.	3.3	18
156	Annual ENSO simulated in a coupled ocean–atmosphere model. Dynamics of Atmospheres and Oceans, 2005, 39, 41-60.	1.8	17
157	Footprints of IOD and ENSO in the Kenyan coral record. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	16
158	The Indian Ocean subtropical dipole mode simulated in the CMIP3 models. Climate Dynamics, 2012, 39, 1385-1399.	3.8	15
159	On the Propagation of Rossby Waves in a Weak Shear Flow. Journal of the Meteorological Society of Japan, 1976, 54, 126-128.	1.8	14
160	A Numerical Study of a Viscous flow Past a Circular Cylinder on an ƒ-plane. Journal of the Meteorological Society of Japan, 1985, 63, 151-167.	1.8	14
161	Buffering Effect and Its Related Ocean Dynamics in the Indonesian Throughflow Region*. Journal of Physical Oceanography, 2008, 38, 503-516.	1.7	14
162	ENSO's far reaching connection to Indian cold waves. Scientific Reports, 2016, 6, 37657.	3.3	14

#	Article	IF	CITATIONS
163	A theory for propagation of an oceanic warm front with application to Sagami Bay. Tellus, 1980, 32, 73-76.	0.8	14
164	A Generalization of Prandtl-Batchelor Theorem for Planetary Fluid Flows in a Closed Geostrophic Contour. Journal of the Meteorological Society of Japan, 1981, 59, 615-619.	1.8	13
165	Parameterizing ocean eddy transports from surface to bottom. Geophysical Research Letters, 2004, 31,	4.0	13
166	A model study of regional airâ€sea interaction in the austral summer precipitation over southern Africa. Journal of Geophysical Research D: Atmospheres, 2015, 120, 2342-2357.	3.3	13
167	Discovery of Chile Niño/Niña. Geophysical Research Letters, 2020, 47, no.	4.0	13
168	The capture of current meander by coastal geometry with possible application to the Kuroshio Current. Tellus, Series A: Dynamic Meteorology and Oceanography, 1987, 39A, 161-169.	1.7	12
169	Impacts of South China Sea throughflow on the mean state and El Niño/Southern Oscillation as revealed by a coupled GCM. Journal of Oceanography, 2015, 71, 105-114.	1.7	12
170	Predictability of the California Niño/Niña*. Journal of Climate, 2015, 28, 7237-7249.	3.2	12
171	Evolution of baroclinic planetary eddies over localized bottom topography in terms of JEBAR. Geophysical and Astrophysical Fluid Dynamics, 1997, 84, 1-27.	1.2	11
172	A numerical study of a viscous flow past a right circular cylinder on a β-plane. Geophysical and Astrophysical Fluid Dynamics, 1986, 37, 129-164.	1.2	10
173	Successive formation of planetary lenses in an intermediate layer. Geophysical and Astrophysical Fluid Dynamics, 2000, 92, 1-29.	1.2	10
174	Impacts of April snow cover extent over Tibetan Plateau and the central Eurasia on Indian Ocean Dipole. International Journal of Climatology, 2019, 39, 1756-1767.	3.5	10
175	On the recent development of simple, coupled ocean-atmosphere models of ENSO. Journal of Oceanography, 1986, 42, 299-307.	1.7	8
176	An analytical study of hindcasts from general circulation models for Indian summer monsoon rainfall. Meteorological Applications, 2014, 21, 695-707.	2.1	8
177	The capture of current meander by coastal geometry with possible application to the Kuroshio Current. Tellus, Series A: Dynamic Meteorology and Oceanography, 1987, 39, 161-169.	1.7	8
178	Wave-induced boundary layers in a rotating homogeneous fluid. Journal of Oceanography, 1978, 34, 97-104.	1.7	6
179	On Energy and Enstrophy Transfer in Two-Dimensional Non-Divergent Waves on a Beta-Plane. Journal of the Meteorological Society of Japan, 1976, 54, 454-456.	1.8	4
180	Long nonlinear topographic planetary waves in a rotating stratified ocean. Journal of the Oceanographical Society of Japan, 1983, 38, 339-345.	0.3	3

#	Article	IF	CITATIONS
181	Time Evolution of a Localized Sea Surface Temperature Anomaly in Coupled Air-sea Models. Journal of the Meteorological Society of Japan, 1989, 67, 1071-1079.	1.8	2
182	Downscaled prediction of extreme seasonal climate over Southeast Asia using a regional climate model. , 2016, , .		2
183	Oceans and Climate Shifts. , 1998, 281, 1143e-1143.		2
184	Seasonally Stratified Analysis of Simulated ENSO Thermodynamics. Journal of Climate, 2007, 20, 4615-4627.	3.2	2
185	Predictability of the Chile Niño/Niña. Geophysical Research Letters, 2021, 48, e2021GL095309.	4.0	2
186	Reducing model biases is essential to projecting future climate variability. National Science Review, 2021, 8, nwab080.	9.5	0
187	Discovery and Prediction of Climate Variability Modes Giving Birth to Abnormal Weather Events. Trends in the Sciences, 2015, 20, 2_98-2_101.	0.0	0
188	Land of Freedom Princeton and Dr. Suki Manabe. Trends in the Sciences, 2022, 27, 2_11-2_13.	0.0	0