

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7787408/publications.pdf Version: 2024-02-01

LINC SUN

#	Article	IF	CITATIONS
1	Peptoid Polymers: A Highly Designable Bioinspired Material. ACS Nano, 2013, 7, 4715-4732.	7.3	369
2	Sulfated graphene as an efficient solid catalyst for acid-catalyzed liquid reactions. Journal of Materials Chemistry, 2012, 22, 5495.	6.7	245
3	Thiolâ^'Ene Clickable Polypeptides. Macromolecules, 2010, 43, 4445-4448.	2.2	147
4	Structure–Conductivity Relationship for Peptoid-Based PEO–Mimetic Polymer Electrolytes. Macromolecules, 2012, 45, 5151-5156.	2.2	137
5	Self-assembly of crystalline nanotubes from monodisperse amphiphilic diblock copolypeptoid tiles. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3954-3959.	3.3	114
6	Direct Formation of Giant Vesicles from Synthetic Polypeptides. Langmuir, 2007, 23, 8308-8315.	1.6	103
7	Fabrication and Mechanical Properties of Engineered Proteinâ€Based Adhesives and Fibers. Advanced Materials, 2020, 32, e1906360.	11.1	97
8	pH-Responsive Peptide Supramolecular Hydrogels with Antibacterial Activity. Langmuir, 2017, 33, 3234-3240.	1.6	85
9	High Antibacterial Activity and Selectivity of the Versatile Polysulfoniums that Combat Drug Resistance. Advanced Materials, 2021, 33, e2104402.	11.1	85
10	Effect of ultrasonic treatment on dispersibility of Fe3O4 nanoparticles and synthesis of multi-core Fe3O4/SiO2 core/shell nanoparticles. Journal of Materials Chemistry, 2005, 15, 4252.	6.7	82
11	Supramolecular Nanodiscs Selfâ€Assembled from Nonâ€ŀonic Heptamethine Cyanine for Imagingâ€Guided Cancer Photothermal Therapy. Advanced Materials, 2020, 32, e1906711.	11.1	82
12	Formation of Reversible Shell Cross-Linked Micelles from the Biodegradable Amphiphilic Diblock Copolymer Poly(l-cysteine)-block-Poly(l-lactide). Langmuir, 2008, 24, 10099-10106.	1.6	76
13	Crystallization in Sequence-Defined Peptoid Diblock Copolymers Induced by Microphase Separation. Journal of the American Chemical Society, 2014, 136, 2070-2077.	6.6	70
14	Crystallization-Driven Two-Dimensional Nanosheet from Hierarchical Self-Assembly of Polypeptoid-Based Diblock Copolymers. Macromolecules, 2018, 51, 6344-6351.	2.2	70
15	Morphology-Conductivity Relationship in Crystalline and Amorphous Sequence-Defined Peptoid Block Copolymer Electrolytes. Journal of the American Chemical Society, 2014, 136, 14990-14997.	6.6	61
16	Supramolecular Nanosheets Assembled from Poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 152 Td (glyco Hydrophobic Polypeptoid: Crystallization Driven Assembly Transition from Filaments to Nanosheets.	ol)- <i>b</i> 2.2	-poly(<i>N59</i>
17	Macromolecules, 2019, 52, 1546-1556. Engineered Nearâ€Infrared Fluorescent Protein Assemblies for Robust Bioimaging and Therapeutic Applications. Advanced Materials, 2020, 32, e2000964.	11.1	58
18	Super-Strong, Nonswellable, and Biocompatible Hydrogels Inspired by Human Tendons. ACS Applied Materials & Interfaces, 2022, 14, 2638-2649.	4.0	52

#	Article	IF	CITATIONS
19	Self-Assembly of Polypeptide-Containing ABC-Type Triblock Copolymers in Aqueous Solution and Its pH Dependence. Biomacromolecules, 2007, 8, 1013-1017.	2.6	51
20	Bioinspired and Mechanically Strong Fibers Based on Engineered Non‣pider Chimeric Proteins. Angewandte Chemie - International Edition, 2020, 59, 8148-8152.	7.2	51
21	Oxygen Carrier Based on Hemoglobin/Poly(<scp>l</scp> -lysine)- <i>block</i> -poly(<scp>l</scp> -phenylalanine) Vesicles. Langmuir, 2009, 25, 13726-13729.	1.6	48
22	Nanoscale Phase Separation in Sequence-Defined Peptoid Diblock Copolymers. Journal of the American Chemical Society, 2013, 135, 14119-14124.	6.6	48
23	A novel one-pot synthesized organosiloxane: synthesis and conversion to directly thermo-crosslinked polysiloxanes with low dielectric constants and excellent thermostability. Polymer Chemistry, 2015, 6, 5984-5988.	1.9	46
24	RGD peptide grafted biodegradable amphiphilic triblock copolymer poly(glutamic) Tj ETQq0 0 0 rgBT /Overlock 10 Part A, 2007, 45, 3218-3230.		Td (acid)-b- 45
25	Two-Dimensional Supramolecular Assemblies from pH-Responsive Poly(ethyl) Tj ETQq1 1 0.784314 rgBT /Overlock Copolymer. Biomacromolecules, 2017, 18, 3367-3374.		507 Td (glyc 45
26	New Fluoropolymers Having Both Low Water Uptake and a Low Dielectric Constant. Macromolecular Chemistry and Physics, 2015, 216, 2302-2308.	1.1	38
27	Hierarchical supramolecular assembly of a single peptoid polymer into a planar nanobrush with two distinct molecular packing motifs. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31639-31647.	3.3	38
28	Morphology and Proton Transport in Humidified Phosphonated Peptoid Block Copolymers. Macromolecules, 2016, 49, 3083-3090.	2.2	36
29	Charge-Determined LCST/UCST Behavior in Ionic Polypeptoids. Biomacromolecules, 2018, 19, 2109-2116.	2.6	36
30	Light- and Metal Ion-Induced Self-Assembly and Reassembly Based on Block Copolymers Containing a Photoresponsive Polypeptide Segment. Macromolecules, 2019, 52, 4686-4693.	2.2	35
31	Robust Biological Fibers Based on Widely Available Proteins: Facile Fabrication and Suturing Application. Small, 2020, 16, e1907598.	5.2	33
32	Aqueous Self-Assembly of a Protein-Mimetic Ampholytic Block Copolypeptide. Macromolecules, 2016, 49, 5494-5501.	2.2	31
33	Generalized and high temperature synthesis of a series of crystalline mesoporous metal oxides based nanocomposites with enhanced catalytic activities for benzene combustion. Journal of Materials Chemistry A, 2013, 1, 4089.	5.2	30
34	Biodegradable thermal- and redox-responsive poly(<scp>l</scp> -glutamate) with Y-shaped	1.7	30
35	Synthesis of robust water-soluble ZnS:Mn/SiO2 core/shell nanoparticles. Journal of Nanoparticle Research, 2008, 10, 653-658.	0.8	29
36	Copperâ€Incorporated Porous Polydivinylbenzene as Efficient and Recyclable Heterogeneous Catalyst in Ullmann Biaryl Ether Coupling. ChemCatChem, 2013, 5, 1606-1613.	1.8	29

#	Article	IF	CITATIONS
37	Cd-MOF@PVDF Mixed-Matrix Membrane with Good Catalytic Activity and Recyclability for the Production of Benzimidazole and Amino Acid Derivatives. Inorganic Chemistry, 2021, 60, 2087-2096.	1.9	27
38	Selfâ€Assembly of a Hydrophobic Polypeptide Containing a Short Hydrophilic Middle Segment: Vesicles to Large Compound Micelles. Macromolecular Chemistry and Physics, 2008, 209, 1129-1136.	1.1	26
39	Triptycene-based three-dimensional covalent organic frameworks with stp topology of honeycomb structure. Materials Chemistry Frontiers, 2021, 5, 944-949.	3.2	26
40	Direct Synthesis of Crystalline Graphtetrayne—A New Graphyne Allotrope. CCS Chemistry, 2021, 3, 1368-1375.	4.6	26
41	Extremely Stable Supramolecular Hydrogels Assembled from Nonionic Peptide Amphiphiles. Langmuir, 2016, 32, 7512-7518.	1.6	24
42	Thermal and redox dual responsive poly(L-glutamate) with oligo(ethylene glycol) side-chains. Chinese Journal of Polymer Science (English Edition), 2016, 34, 1436-1447.	2.0	22
43	Construction of two-dimensional supramolecular nanostructure with aggregation-induced emission effect <i>via</i> host–guest interactions. Materials Chemistry Frontiers, 2019, 3, 1532-1537.	3.2	22
44	Biomimetic pegylated polypeptoids with thermoresponsive properties. Polymer, 2018, 138, 132-138.	1.8	21
45	A convenient approach for antibacterial polypeptoids featuring sulfonium and oligo(ethylene glycol) subunits. Biomaterials Science, 2020, 8, 6969-6977.	2.6	21
46	Peptoid applications in biomedicine and nanotechnology. , 2018, , 183-213.		19
47	Self-crosslinking assemblies with tunable nanostructures from photoresponsive polypeptoid-based block copolymers. Polymer Chemistry, 2020, 11, 337-343.	1.9	19
48	Tunable LCST/UCST-Type Polypeptoids and Their Structure–Property Relationship. Biomacromolecules, 2020, 21, 4980-4988.	2.6	19
49	Three layer-structured cadmium coordination polymers based on flexible 5-(4-pyridyl)-methoxylisophthalic acid: rapid synthesis and luminescence sensing. CrystEngComm, 2019, 21, 1001-1008.	1.3	18
50	Bioinspired and Mechanically Strong Fibers Based on Engineered Nonâ€ s pider Chimeric Proteins. Angewandte Chemie, 2020, 132, 8225-8229.	1.6	18
51	Dual thermal- and pH-responsive polypeptide-based hydrogels. Chinese Journal of Polymer Science (English Edition), 2017, 35, 1243-1252.	2.0	17
52	Esterase-Responsive Polypeptide Vesicles as Fast-Response and Sustained-Release Nanocompartments for Fibroblast-Exempt Drug Delivery. Biomacromolecules, 2020, 21, 5093-5103.	2.6	17
53	A Novel Biodegradable and Lightâ€Breakable Diblock Copolymer Micelle for Drug Delivery. Advanced Engineering Materials, 2009, 11, B7.	1.6	16
54	A Novel Thermoâ€Polymerizable Aromatic Diamine: Synthesis and Application in Enhancement of the Properties of Conventional Polyimides. Macromolecular Chemistry and Physics, 2016, 217, 856-862.	1.1	16

#	Article	lF	CITATIONS
55	Nanoâ€mechanical characterization of disassembling amyloid fibrils using the <scp>P</scp> eak <scp>F</scp> orce <scp>QNM</scp> method. Biopolymers, 2017, 107, 61-69.	1.2	16
56	Deep Belief Network for Fingerprinting-Based RFID Indoor Localization. , 2019, , .		16
57	Resolving the Morphology of Peptoid Vesicles at the 1 nm Length Scale Using Cryogenic Electron Microscopy. Journal of Physical Chemistry B, 2019, 123, 1195-1205.	1.2	15
58	Thermoresponsive Polypeptoids. Polymers, 2020, 12, 2973.	2.0	15
59	Fabrication of reversible pH-responsive aggregation-induced emission luminogens assisted by a block copolymer <i>via</i> a dynamic covalent bond. Polymer Chemistry, 2021, 12, 2825-2831.	1.9	15
60	Dualâ€responsive pegylated polypeptoids with tunable cloud point temperatures. Biopolymers, 2019, 110, e23243.	1.2	14
61	Co-salen functionalized on graphene as an efficient heterogeneous catalyst for cyclohexene oxidation. Journal of Energy Chemistry, 2013, 22, 48-51.	7.1	13
62	Enzyme responsive supramolecular hydrogels assembled from nonionic peptide amphiphiles. Science China Chemistry, 2018, 61, 1314-1319.	4.2	13
63	Schiff base and reductive amination reactions of α-amino acids: a facile route toward <i>N</i> -alkylated amino acids and peptoid synthesis. Polymer Chemistry, 2018, 9, 4617-4624.	1.9	13
64	Stimuliâ€Responsive Polypeptideâ€Based Supramolecular Hydrogels Mediated by Ca ²⁺ Ion Crossâ€Linking. Chinese Journal of Chemistry, 2019, 37, 1137-1141.	2.6	13
65	Thermoinduced Crystallization-Driven Self-Assembly of Bioinspired Block Copolymers in Aqueous Solution. Biomacromolecules, 2020, 21, 3411-3419.	2.6	13
66	Propargyl ether-functionalized poly(m-phenylene): a new precursor for the preparation of polymers with high modulus and high Tg. RSC Advances, 2015, 5, 23009-23014.	1.7	12
67	Biomimetic polypeptides with reversible pH-dependent thermal responsive property. Polymer, 2017, 118, 173-179.	1.8	11
68	Dimension control on self-assembly of a crystalline core-forming polypeptoid block copolymer: 1D nanofibers <i>versus</i> 2D nanosheets. Polymer Chemistry, 2021, 12, 1147-1154.	1.9	11
69	Single-crystal structures of cucurbituril-based supramolecular host–guest complexes for bioimaging. Chemical Communications, 2021, 57, 10190-10193.	2.2	11
70	Biomimetic polypeptoids with para-oligo(ethylene glycol) benzyl side-chains synthesized from α-Amino acids. European Polymer Journal, 2019, 119, 281-288.	2.6	10
71	A spiro-centered thermopolymerizable fluorinated macromonomer: synthesis and conversion to the high performance polymer. RSC Advances, 2017, 7, 18861-18866.	1.7	9
72	Tunable Aggregation - Induced Emission Fluorophore with the Assistance of the Self - Assembly of Block Copolymers by Controlling the Morphology and Secondary Conformation for Bioimaging. Biomacromolecules, 2022, 23, 798-807.	2.6	9

#	Article	IF	CITATIONS
73	Antibacterial Copolypeptoids with Potent Activity against Drug Resistant Bacteria and Biofilms, Excellent Stability, and Recycling Property. Small, 2022, 18, e2106936.	5.2	9
74	Antimicrobial peptide-inspired antibacterial polymeric materials for biosafety. Biosafety and Health, 2022, 4, 269-279.	1.2	9
75	PLLA-PCys co-electrospun fibers for capture and elution of glutathione S-transferase. Science in China Series B: Chemistry, 2009, 52, 2033-2037.	0.8	8
76	Application of the biodegradable diblock copolymer poly(<scp>L</scp> â€lactide)â€ <i>block</i> â€poly(<scp>L</scp> â€cysteine): Drug delivery and protein conjugation. Journal of Applied Polymer Science, 2010, 118, 1738-1742.	1.3	8
77	3D lanthanide metal–organic frameworks constructed from lanthanide formate skeletons and 3,5-bis(4′-carboxy-phenyl)-1,2,4-triazole connectors: synthesis, structure and luminescence. RSC Advances, 2015, 5, 106107-106112.	1.7	8
78	Multifunctional solid-state electrochemiluminescent chemosensors and aptasensor with free-standing active sites based on task-specific pyrene-terminated polymers via RAFT polymerization. Analytica Chimica Acta, 2018, 1039, 31-40.	2.6	8
79	Three helical chain-based 3D coordination polymers: solvent-induced syntheses, tunable structures and catalytic properties for the Strecker reaction. CrystEngComm, 2019, 21, 5440-5447.	1.3	8
80	Polyion Complexes via Electrostatic Interaction of Oppositely Charged Block Copolymers. Macromolecules, 2020, 53, 8737-8740.	2.2	8
81	A New Fourâ€Arm Organosiloxane with Thermopolymerizable Trifluorovinyl ether Groups: Synthesis and Conversion to the Polymer with both Low Dielectric Constant and Low Water Uptake. Macromolecular Chemistry and Physics, 2017, 218, 1700010.	1.1	7
82	Morphological Transitions of Photoresponsive Vesicles from Amphiphilic Polypeptoid Copolymers for Controlled Release. Polymers, 2020, 12, 798.	2.0	5
83	Assessment and Prognostic Value of Immediate Changes in Post-Ablation Intratumor Density Heterogeneity of Pulmonary Tumors via Radiomics-Based Computed Tomography Features. Frontiers in Oncology, 2021, 11, 615174.	1.3	5
84	Photoâ€ŧriggered polymeric antimicrobial peptide mimics with excellent selectivity and antifouling and antimicrobial hydrogels. Giant, 2022, 10, 100097.	2.5	5
85	Hierarchical Approach for Controlled Assembly of Branched Nanostructures from One Polymer Compound by Engineering Crystalline Domains. ACS Nano, 2022, 16, 10470-10481.	7.3	5
86	Design of Enzyme Micelles with Controllable Concavoâ€Convex Micromorphologies for Highly Enhanced Stability and Catalytical Activity. Macromolecular Bioscience, 2018, 18, 1700312.	2.1	4
87	Polypeptoid-Assisted Formation of Supramolecular Architectures from Folic Acid for Targeted Cancer Therapy with Enhanced Efficacy. Biomacromolecules, 2022, 23, 2793-2802.	2.6	3
88	Preparation of a Novel Type of Zwitterionic Polymer and the Antifouling PDMS Coating. Biomimetics, 2022, 7, 50.	1.5	2
89	Zwitterionic Polypeptoids: A Promising Class of Antifouling Bioinspired Materials. Materials, 2022, 15, 4498.	1.3	2
90	Extraction and Characterization of Papillaâ€like Biosilica from Rice Hulls. Chinese Journal of Chemistry, 2009, 27, 1031-1034.	2.6	1

#	Article	IF	CITATIONS
91	Oligo(β-peptoid)s with Backbone Chirality from Aspartic Acid Derivatives: Synthesis and Property Investigation. ACS Omega, 2020, 5, 33125-33132.	1.6	1
92	Macromol. Chem. Phys. 7/2016. Macromolecular Chemistry and Physics, 2016, 217, 924-924.	1.1	0
93	Effect of hydration on morphology of thin phosphonate block copolymer electrolyte membranes studied by electron tomography. Polymer Engineering and Science, 2021, 61, 1104-1115.	1.5	0
94	Antibacterial Copolypeptoids with Potent Activity against Drug Resistant Bacteria and Biofilms, Excellent Stability, and Recycling Property (Small 11/2022). Small, 2022, 18, .	5.2	0
95	Tunable Nanostructure Assembled from Dual-Responsive Crystalline Block Copolypeptoids. ACS Applied Polymer Materials, 2022, 4, 3919-3925.	2.0	0