
Jurga Juodkazyte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7786802/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	WO3 coatings for photoelectrochemical synthesis of persulfate: efficiency, stability and applicability. Journal of Solid State Electrochemistry, 2022, 26, 1021-1035.	1.2	7
2	BiVO4-based coatings for non-enzymatic photoelectrochemical glucose determination. Journal of Electroanalytical Chemistry, 2022, 918, 116446.	1.9	15
3	Electrochemical Performance of NASICON-structured Na3-x V2-xTix(PO4)3 (0.0 < x < 1.0) as aqueous Na-ion battery positive electrodes. Electrochimica Acta, 2022, 424, 140580.	2.6	6
4	Understanding and mitigation of NaTi ₂ (PO ₄) ₃ degradation in aqueous Na-ion batteries. Journal of Materials Chemistry A, 2021, 9, 12670-12683.	5.2	26
5	Self-Healing Properties of Cerium-Modified Molybdate Conversion Coating on Steel. Coatings, 2021, 11, 194.	1.2	3
6	Electrochemical Performance of Sol-Gel Synthesized NaTi ₂ (PO ₄) ₃ - Carbon Composites as Aqueous Na-Ion Battery Anodes. Journal of the Electrochemical Society, 2021, 168, 060545.	1.3	7
7	Atoms vs. lons: Intermediates in Reversible Electrochemical Hydrogen Evolution Reaction. Catalysts, 2021, 11, 1135.	1.6	5
8	Black-Si as a Photoelectrode. Nanomaterials, 2020, 10, 873.	1.9	9
9	Activity of sol-gel derived nanocrystalline WO3 films in photoelectrochemical generation of reactive chlorine species. Journal of Electroanalytical Chemistry, 2020, 871, 114277.	1.9	17
10	Tuning the Photo-Luminescence Properties of WO3 Layers by the Adjustment of Layer Formation Conditions. Materials, 2020, 13, 2814.	1.3	22
11	Selectivity of Tungsten Oxide Synthesized by Sol-Gel Method Towards Some Volatile Organic Compounds and Gaseous Materials in a Broad Range of Temperatures. Materials, 2020, 13, 523.	1.3	17
12	Combined soft lithographic and electrochemical fabrication of nanostructured platinum microelectrode arrays for miniaturized sensor applications. Microelectronic Engineering, 2019, 208, 39-46.	1.1	6
13	Electrolytic splitting of saline water: Durable nickel oxide anode for selective oxygen evolution. International Journal of Hydrogen Energy, 2019, 44, 5929-5939.	3.8	69
14	Hydrogen Evolution on Nano-StructuredCuO/Pd Electrode: Raman Scattering Study. Applied Sciences (Switzerland), 2019, 9, 5301.	1.3	3
15	Study on charge transfer processes in thin-film heterojunction between cuprous oxide and hematite. Materials Science in Semiconductor Processing, 2018, 80, 56-62.	1.9	13
16	Spray pyrolysis approach to CZTSSe thin films. Influence of solvents on film characteristics. Semiconductor Science and Technology, 2018, 33, 095013.	1.0	16
17	Properties and characterization of CZTS nanoparticles prepared by microwave heating irradiation. Chemija, 2018, 29, .	0.1	4
18	Theodor von Grotthuss' Contribution to Electrochemistry. Electrochimica Acta, 2017, 236, 28-32.	2.6	15

Jurga Juodkazyte

#	Article	IF	CITATIONS
19	Optical readout of hydrogen storage in films of Au and Pd. Optics Express, 2017, 25, 24081.	1.7	24
20	Research on Hydrothermal Decoration of TiO ₂ Nanotube Films with Nanoplatelet MoS ₂ Species. Nanomaterials and Nanotechnology, 2016, 6, 37.	1.2	4
21	Solar water splitting: Efficiency discussion. International Journal of Hydrogen Energy, 2016, 41, 11941-11948.	3.8	37
22	Nanotextured surfaces for surface enhanced Raman spectroscopy and sensors. , 2016, , .		1
23	Nanotextured CuO: sensing and light harvesting platform. Proceedings of SPIE, 2015, , .	0.8	ο
24	Black-CuO: surface-enhanced Raman scattering and infrared properties. Nanoscale, 2015, 7, 18299-18304.	2.8	34
25	Novel method to determine the actual surface area of a laser-nanotextured sensor. Applied Physics A: Materials Science and Processing, 2014, 114, 169-175.	1.1	17
26	Decoration of the TiO2 nanotube arays with copper suboxide by AC treatment. Electrochimica Acta, 2014, 125, 516-523.	2.6	10
27	In x Ga 1â^'x N performance as a band-gap-tunable photo-electrode in acidic and basic solutions. Solar Energy Materials and Solar Cells, 2014, 130, 36-41.	3.0	24
28	Reversible hydrogen evolution and oxidation on Pt electrode mediated by molecular ion. Applied Surface Science, 2014, 290, 13-17.	3.1	32
29	Study on copper oxide stability in photoelectrochemical cell composed of nanostructured TiO2 and CuxO electrodes. Electrochimica Acta, 2014, 137, 363-371.	2.6	24
30	Evaluation of electrochemically active surface area of photosensitive copper oxide nanostructures with extremely high surface roughness. Electrochimica Acta, 2013, 98, 109-115.	2.6	14
31	Photoelectrochemistry of silicon in HF solution. Journal of Solid State Electrochemistry, 2013, 17, 2269-2276.	1.2	19
32	PCB failure analysis related to the ENIG black pad problem. Circuit World, 2013, 39, 124-132.	0.7	17
33	Reversible hydrogen evolution and oxidation mediated by molecular ion. Proceedings of SPIE, 2013, , .	0.8	Ο
34	Advanced surface protection for improved reliability PCB systems (ASPIS). Circuit World, 2012, 38, 21-29.	0.7	11
35	Hydrogen species within the metals: Role of molecular hydrogen ion H2+. Applied Surface Science, 2011, 258, 743-747.	3.1	30
36	Light energy accumulation using Ti/RuO2 electrode as capacitor. Journal of Solid State Electrochemistry, 2010, 14, 741-746.	1.2	9

Jurga Juodkazyte

#	Article	IF	CITATIONS
37	Influence of laser microfabrication on silicon electrochemical behavior in HF solution. Journal of Solid State Electrochemistry, 2010, 14, 797-802.	1.2	9
38	Photoelectrolysis of water:Solar hydrogen - achievements and perspectives. Optics Express, 2010, 18, A147.	1.7	55
39	On the charge storage mechanism at RuO2/0.5ÂM H2SO4 interface. Journal of Solid State Electrochemistry, 2008, 12, 1399-1404.	1.2	37
40	Nickel surface anodic oxidation and electrocatalysis of oxygen evolution. Journal of Solid State Electrochemistry, 2008, 12, 1469-1479.	1.2	148
41	Difference between surface electrochemistry of ruthenium and RuO ₂ electrodes. Transactions of the Institute of Metal Finishing, 2007, 85, 194-201.	0.6	33
42	Fabrication and properties of metalo-dielectric photonic crystal structures for infrared spectral region. Optics Express, 2007, 15, 8454.	1.7	53
43	EQCM Study of Ru and RuO2 Surface Electrochemistry. Electroanalysis, 2007, 19, 1093-1099.	1.5	14
44	Alternative view of anodic surface oxidation of noble metals. Electrochimica Acta, 2006, 51, 6159-6164.	2.6	16
45	Iridium Anodic Oxidation to Ir(III) and Ir(IV) Hydrous Oxides. Electroanalysis, 2005, 17, 947-952.	1.5	57
46	EQCM Study of Iridium Anodic Oxidation in H2SO4 and KOH Solutions. Electroanalysis, 2005, 17, 1734-1739.	1.5	21
47	Realization of Rhodium Metal-Oxide Electrode in Indifferent Electrolytes. Electroanalysis, 2004, 16, 1622-1627.	1.5	3
48	Title is missing!. Russian Journal of Electrochemistry, 2003, 39, 954-959.	0.3	47
49	XPS studies on the gold oxide surface layer formation. Electrochemistry Communications, 2000, 2, 503-507.	2.3	133
50	Cyclic voltammetric studies on the reduction of a gold oxide surface layer. Electrochemistry Communications, 1999, 1, 315-318.	2.3	34
51	Determination of Au(III) in the surface layers formed anodically on the gold electrode. Journal of Electroanalytical Chemistry, 1998, 441, 19-24.	1.9	14