Robin J White

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7786753/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Supported metal nanoparticles on porous materials. Methods and applications. Chemical Society Reviews, 2009, 38, 481-494.	18.7	1,106
2	Sustainable carbon materials. Chemical Society Reviews, 2015, 44, 250-290.	18.7	997
3	Hollow Carbon Nanospheres with Superior Rate Capability for Sodiumâ€Based Batteries. Advanced Energy Materials, 2012, 2, 873-877.	10.2	996
4	Beyond Mechanical Recycling: Giving New Life to Plastic Waste. Angewandte Chemie - International Edition, 2020, 59, 15402-15423.	7.2	809
5	Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage. Energy and Environmental Science, 2012, 5, 6796.	15.6	758
6	A one-pot hydrothermal synthesis of sulfur and nitrogen doped carbon aerogels with enhanced electrocatalytic activity in the oxygen reduction reaction. Green Chemistry, 2012, 14, 1515.	4.6	541
7	Tuneable porous carbonaceous materials from renewable resources. Chemical Society Reviews, 2009, 38, 3401.	18.7	392
8	Green chemistry and the biorefinery: a partnership for a sustainable future. Green Chemistry, 2006, 8, 853.	4.6	285
9	Functional Hollow Carbon Nanospheres by Latex Templating. Journal of the American Chemical Society, 2010, 132, 17360-17363.	6.6	254
10	Carbohydrate-Derived Hydrothermal Carbons: A Thorough Characterization Study. Langmuir, 2012, 28, 12373-12383.	1.6	250
11	Hollow Carbon Nanospheres with a High Rate Capability for Lithiumâ€Based Batteries. ChemSusChem, 2012, 5, 400-403.	3.6	215
12	Palladium nanoparticles on polysaccharide-derived mesoporous materials and their catalytic performance in C–C coupling reactions. Green Chemistry, 2008, 10, 382-387.	4.6	208
13	Naturally inspired nitrogen doped porous carbon. Journal of Materials Chemistry, 2009, 19, 8645.	6.7	200
14	A sustainable synthesis of nitrogen-doped carbon aerogels. Green Chemistry, 2011, 13, 2428.	4.6	185
15	Energy Efficiency in Chemical Reactions:Â A Comparative Study of Different Reaction Techniques. Organic Process Research and Development, 2005, 9, 516-518.	1.3	177
16	Always Look on the "Light―Side of Life: Sustainable Carbon Aerogels. ChemSusChem, 2014, 7, 670-689.	3.6	157
17	Boraxâ€Mediated Formation of Carbon Aerogels from Glucose. Advanced Functional Materials, 2012, 22, 3254-3260.	7.8	149
18	Ordered Carbohydrate-Derived Porous Carbons. Chemistry of Materials, 2011, 23, 4882-4885.	3.2	136

ROBIN J WHITE

#	Article	IF	CITATIONS
19	Renewable Nitrogenâ€Doped Hydrothermal Carbons Derived from Microalgae. ChemSusChem, 2012, 5, 1834-1840.	3.6	135
20	Hierarchical porous carbonaceous materials via ionothermal carbonization of carbohydrates. Journal of Materials Chemistry, 2011, 21, 7434.	6.7	131
21	A Sustainable Template for Mesoporous Zeolite Synthesis. Journal of the American Chemical Society, 2014, 136, 2715-2718.	6.6	123
22	Economics & carbon dioxide avoidance cost of methanol production based on renewable hydrogen and recycled carbon dioxide – power-to-methanol. Sustainable Energy and Fuels, 2018, 2, 1244-1261.	2.5	115
23	Pectinâ€Derived Porous Materials. Chemistry - A European Journal, 2010, 16, 1326-1335.	1.7	93
24	Polysaccharideâ€Derived Carbons for Polar Analyte Separations. Advanced Functional Materials, 2010, 20, 1834-1841.	7.8	82
25	Porous Carbohydrateâ€Based Materials via Hard Templating. ChemSusChem, 2010, 3, 188-194.	3.6	80
26	Tuneable Mesoporous Materials from αâ€≺scp>Dâ€Polysaccharides. ChemSusChem, 2008, 1, 408-411.	3.6	76
27	Direct methane oxidation over Pt-modified nitrogen-doped carbons. Chemical Communications, 2013, 49, 240-242.	2.2	74
28	Template Synthesis of Carbonaceous Tubular Nanostructures with Tunable Surface Properties. Chemistry of Materials, 2010, 22, 6590-6597.	3.2	72
29	Die nÃ⊠hste Generation des Recyclings – neues Leben für Kunststoffmüll. Angewandte Chemie, 2020, 132, 15524-15548.	1.6	62
30	Flexible Coral-like Carbon Nanoarchitectures via a Dual Block Copolymer–Latex Templating Approach. Chemistry of Materials, 2013, 25, 4781-4790.	3.2	58
31	Local Platinum Environments in a Solid Analogue of the Molecular Periana Catalyst. ACS Catalysis, 2016, 6, 2332-2340.	5.5	53
32	Methanol Synthesis – Industrial Challenges within a Changing Raw Material Landscape. Chemie-Ingenieur-Technik, 2018, 90, 1409-1418.	0.4	51
33	Polyformamidineâ€Derived Nonâ€Noble Metal Electrocatalysts for Efficient Oxygen Reduction Reaction. Advanced Functional Materials, 2018, 28, 1707551.	7.8	49
34	Poly(oxymethylene) dimethyl ether synthesis – a combined chemical equilibrium investigation towards an increasingly efficient and potentially sustainable synthetic route. Reaction Chemistry and Engineering, 2017, 2, 50-59.	1.9	43
35	Hydrothermal base catalyzed depolymerization and conversion of technical lignin – An introductory review. Carbon Resources Conversion, 2019, 2, 59-71.	3.2	42
36	Towards a Sustainable Synthesis of Oxymethylene Dimethyl Ether by Homogeneous Catalysis and Uptake of Molecular Formaldehyde. Angewandte Chemie - International Edition, 2018, 57, 9461-9464.	7.2	38

ROBIN J WHITE

#	Article	IF	CITATIONS
37	Comparative well-to-wheel life cycle assessment of OME _{3–5} synfuel production <i>via</i> the power-to-liquid pathway. Sustainable Energy and Fuels, 2019, 3, 3219-3233.	2.5	37
38	Molecular‣evel Understanding of the Carbonisation of Polysaccharides. Chemistry - A European Journal, 2013, 19, 9351-9357.	1.7	33
39	Starbon® acids in alkylation and acetylation reactions: Effect of the Brönsted-Lewis acidity. Catalysis Communications, 2011, 12, 1471-1476.	1.6	27
40	A Sweet Killer: Mesoporous Polysaccharide Confined Silver Nanoparticles for Antibacterial Applications. International Journal of Molecular Sciences, 2011, 12, 5782-5796.	1.8	25
41	Structure, stability and permeation properties of NaA zeolite membranes for H2O/H2 and CH3OH/H2 separations. Journal of the European Ceramic Society, 2018, 38, 211-219.	2.8	22
42	Carbon-based ionogels: tuning the properties of the ionic liquid via carbon–ionic liquid interaction. Physical Chemistry Chemical Physics, 2012, 14, 5992.	1.3	20
43	A hybrid description and evaluation of oxymethylene dimethyl ethers synthesis based on the endothermic dehydrogenation of methanol. Reaction Chemistry and Engineering, 2018, 3, 676-695.	1.9	19
44	One pot conversion of glucose to ethyl levulinate over a porous hydrothermal acid catalyst in green solvents. RSC Advances, 2019, 9, 20341-20344.	1.7	19
45	Nitrogen-doped Hydrothermal Carbons. Green, 2012, 2, 25-40.	0.4	17
46	Bio-electrochemical conversion of industrial wastewater-COD combined with downstream methanol synthesis – an economic and life cycle assessment. Green Chemistry, 2018, 20, 2742-2762.	4.6	17
47	Describing oxymethylene ether synthesis based on the application of non-stoichiomsetric Gibbs minimisation. Reaction Chemistry and Engineering, 2018, 3, 277-292.	1.9	15
48	Solvent Applications of Short-Chain Oxymethylene Dimethyl Ether Oligomers. ACS Sustainable Chemistry and Engineering, 2019, 7, 14834-14840.	3.2	15
49	Directing nitrogen-doped carbon support chemistry for improved aqueous phase hydrogenation catalysis. Catalysis Science and Technology, 2020, 10, 4794-4808.	2.1	13
50	Highly correlated ab initio thermodynamics of oxymethylene dimethyl ethers (OME): formation and extension to the liquid phase. Sustainable Energy and Fuels, 2017, 1, 1177-1183.	2.5	12
51	Towards a Sustainable Synthesis of Oxymethylene Dimethyl Ether by Homogeneous Catalysis and Uptake of Molecular Formaldehyde. Angewandte Chemie, 2018, 130, 9605-9608.	1.6	11
52	An Interesting Class of Porous Polymer—Revisiting the Structure of Mesoporous αâ€ <scp>d</scp> â€Polysaccharide Gels. ChemSusChem, 2016, 9, 280-288.	3.6	9
53	Hydrothermal base catalysed treatment of Kraft Lignin for the preparation of a sustainable carbon fibre precursor. Bioresource Technology Reports, 2019, 5, 251-260.	1.5	7
54	Hydrothermal base catalysed treatment of Kraft lignin - time dependent analysis and a techno-economic evaluation for carbon fibre applications. Bioresource Technology Reports, 2019, 6, 241-250.	1.5	6

ROBIN J WHITE

#	Article	IF	CITATIONS
55	Functionalising hydrothermal carbons for catalysis – investigating solid acids in esterification reactions. Catalysis Science and Technology, 2020, 10, 776-787.	2.1	6
56	CHAPTER 1. The Search for Functional Porous Carbons from Sustainable Precursors. RSC Green Chemistry, 2015, , 3-49.	0.0	5
57	Gas permeation properties of NaA zeolite membranes: effect of silica source on hydrogel synthesis and layer thickness. Journal of Porous Materials, 2019, 26, 1121-1129.	1.3	4
58	CHAPTER 10. Bulk and Surface Analysis of Carbonaceous Materials. RSC Green Chemistry, 2015, , 311-354.	0.0	3
59	Chemical Vapor Deposition for Advanced Polymer Electrolyte Fuel Cell Membranes. ChemElectroChem, 2022, 9, .	1.7	3
60	Colloidal construction of porous polysaccharide-supported cadmium sulphide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 444, 69-75.	2.3	2
61	From Polysaccharides toÂStarbons®. RSC Green Chemistry, 2015, , 53-81.	0.0	2
62	Porous Hydrothermal Carbon Materials, Nanoparticles, Hybrids and Composites. RSC Green Chemistry, 2015, , 156-190.	0.0	2
63	Environmental assessment of OME3-5 synfuel production via the power-to-liquid pathway. Proceedings, 2020, , 415-422.	0.2	1
64	Other Approaches and the Commercialisation of Sustainable Carbonaceous Material Technology. RSC Green Chemistry, 2015, , 377-406.	0.0	1