Takashi Hayashita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7786392/publications.pdf

Version: 2024-02-01

516710 377865 1,249 61 16 34 citations g-index h-index papers 62 62 62 1066 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Boronic Acid Fluorophore \hat{I}^2 -Cyclodextrin Complex Sensors for Selective Sugar Recognition in Water. Analytical Chemistry, 2001, 73, 1530-1536.	6.5	157
2	Benzo-15-crown-5 Fluoroionophore \hat{I}^3 -Cyclodextrin Complex with Remarkably High Potassium Ion Sensitivity and Selectivity in Water. Journal of the American Chemical Society, 1999, 121, 2319-2320.	13.7	116
3	Selective Potassium Ion Recognition by Benzo-15-crown-5 Fluoroionophore/γ-Cyclodextrin Complex Sensors in Water. Analytical Chemistry, 2000, 72, 5841-5846.	6. 5	99
4	Anion Sensing by a Thiourea Based Chromoionophore via Hydrogen Bonding Analytical Sciences, 1998, 14, 595-597.	1.6	91
5	Selective glucose recognition by boronic acid azoprobe \hat{l}^3 -cyclodextrin complexes in water. Chemical Communications, 2009, , 1709.	4.1	70
6	Highly selective recognition of lead ion in water by a podand fluoroionophore \hat{I}^3 -cyclodextrin complex sensor. Chemical Communications, 2003, , 2160-2161.	4.1	67
7	Positioning dependent anion recognition by thiourea-based chromoionophores via hydrogen bonding in aqueous vesicle solutions. Chemical Communications, 2000, , 755-756.	4.1	56
8	Glucose Recognition by a Supramolecular Complex of Boronic Acid Fluorophore with Boronic Acid-Modified Cyclodextrin in Water. Analytical Sciences, 2012, 28, 121-126.	1.6	45
9	Development of Supramolecular Saccharide Sensors Based on Cyclodextrin Complexes and Self-assembling Systems. Chemical and Pharmaceutical Bulletin, 2017, 65, 318-325.	1.3	43
10	Rapid and Selective Discrimination of Gram-Positive and Gram-Negative Bacteria by Boronic Acid-Modified Poly(amidoamine) Dendrimer. Analytical Chemistry, 2019, 91, 3929-3935.	6.5	37
11	Design and Function of Supramolecular Recognition Systems Based on Guest-Targeting Probe-Modified Cyclodextrin Receptors for ATP. Journal of Organic Chemistry, 2017, 82, 976-981.	3.2	33
12	The design of phenylboronic acid azoprobe–polyamidoamine dendrimer complexes as supramolecular sensors for saccharide recognition in water. New Journal of Chemistry, 2015, 39, 2620-2626.	2.8	22
13	Structural effect of fluorophore on phenylboronic acid fluorophore/cyclodextrin complex for selective glucose recognition. Frontiers of Chemical Science and Engineering, 2020, 14, 53-60.	4.4	19
14	Efficient Ion-Pair Extraction of Potassium Chloride from Aqueous Phase into Nitrobenzene Containing Dicyclohexyl-18-crown-6 as Cation Binder and Diphenylthiourea as Anion Binder Analytical Sciences, 1999, 15, 1185-1189.	1.6	18
15	A dibenzo-16-crown-5 fluoroionophore for selective emission ratio sensing of Na+ in basic aqueous dioxane solution â€. Perkin Transactions II RSC, 2000, , 1003-1006.	1.1	17
16	Guest-induced supramolecular chirality in a ditopic azoprobe–cyclodextrin complex in water. Chemical Communications, 2014, 50, 10059-10061.	4.1	17
17	Photocurrent enhancement of porphyrin molecules over a wide-wavelength region based on combined use of silver nanoprisms with different aspect ratios. Journal of Materials Chemistry C, 2015, 3, 11439-11448.	5.5	16
18	Design of a polymer inclusion membrane having proton-ionizable polyether carriers and their separation function for lead ion. Bunseki Kagaku, 2003, 52, 755-762.	0.2	15

#	Article	IF	CITATIONS
19	Design of Supramolecular Cyclodextrin Complex Sensors for Ion and Molecule Recognition in Water. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2004, 50, 87-94.	1.6	15
20	Saccharide Recognition Based on Self-Assembly of Amphiphilic Phenylboronic Acid Azoprobes. Langmuir, 2016, 32, 10761-10766.	3.5	15
21	Development of Dipicolylamine-Modified Cyclodextrins for the Design of Selective Guest-Responsive Receptors for ATP. Molecules, 2018, 23, 635.	3.8	15
22	Electrochemical Assay for Extremely Selective Recognition of Fructose Based on 4â€Ferroceneâ€Phenylboronic Acid Probe and βâ€Cyclodextrins Supramolecular Complex. Small, 2020, 16, e2003359.	10.0	15
23	Lead Ion Selective Signal Amplification by a Supramolecular Podand Fluoroionophore/Surfactant Complex Sensor in Water. Supramolecular Chemistry, 2005, 17, 141-146.	1.2	14
24	Metal and Phosphate Ion Recognition Using Dipicolylamine-modified Fluorescent Silica Nanoparticles. Analytical Sciences, 2018, 34, 1125-1130.	1.6	14
25	Selective Sugar Recognition by Anthracene-Type Boronic Acid Fluorophore/Cyclodextrin Supramolecular Complex Under Physiological pH Condition. Frontiers in Chemistry, 2019, 7, 806.	3.6	14
26	<i>Staphylococcus aureus</i> Detection by Fluorescent Silica Nanoparticles Modified with Metalâ€"Dipicolylamine Complexes. Chemistry Letters, 2016, 45, 749-751.	1.3	12
27	Phosphate-sensing with (di-(2-picolyl)amino)quinazolines based on a fluorescence on–off system. RSC Advances, 2020, 10, 15299-15306.	3. 6	12
28	Design and function of metal-ion probes based on photosignal transduction Bunseki Kagaku, 2000, 49, 75-89.	0.2	10
29	Design and Evaluation of Selective Recognition on Supramolecular Gel Using Soft Molecular Template Effect. Chemistry Letters, 2014, 43, 228-230.	1.3	10
30	Fast and Sensitive Bacteria Detection by Boronic Acid Modified Fluorescent Dendrimer. Sensors, 2021, 21, 3115.	3.8	10
31	Electrochemical sugar recognition using a ruthenium complex with boronic acid assembled on polyamidoamine (PAMAM) dendrimer. Analytical Methods, 2012, 4, 2657.	2.7	9
32	A simple supramolecular complex of boronic acid-appended \hat{l}^2 -cyclodextrin and a fluorescent boronic acid-based probe with excellent selectivity for $\langle scp \rangle d \langle scp \rangle$ -glucose in water. RSC Advances, 2022, 12, 20259-20263.	3.6	9
33	Analytical Chemistry represented by "super" and "ultra". Supramolecular function of fluorescent probe/cyclodextrin complex sensors in water Bunseki Kagaku, 2001, 50, 355-368.	0.2	8
34	Self-assembly of Amphiphilic Benzo-15-crown-5 Azoprobes in Response to Alkali Metal Ions in Water. Chemistry Letters, 2007, 36, 880-881.	1.3	8
35	Structural Effect of Amphiphilic Crown Ether Azoprobes on Alkali Metal Ion Recognition and Aggregation Behavior in Water. Bulletin of the Chemical Society of Japan, 2008, 81, 1589-1594.	3.2	8
36	Supramolecular Zn(II)-Dipicolylamine-Azobenzene-Aminocyclodextrin-ATP Complex: Design and ATP Recognition in Water. International Journal of Molecular Sciences, 2021, 22, 4683.	4.1	8

#	Article	IF	Citations
37	Rapid Bacterial Recognition over a Wide pH Range by Boronic Acid-Based Ditopic Dendrimer Probes for Gram-Positive Bacteria. Molecules, 2022, 27, 256.	3.8	8
38	Role of alkan-1-ol solvents in the synthesis of yellow luminescent carbon quantum dots (CQDs): van der Waals force-caused aggregation and agglomeration. RSC Advances, 2020, 10, 14396-14402.	3.6	7
39	Synthesis and Antioxidant Activity of Silver Nanoparticles Using the Odontonema strictum Leaf Extract. Molecules, 2022, 27, 3210.	3.8	7
40	Metal Ion Separations with Lariat Ether Ion-Exchange Resins. ACS Symposium Series, 1999, , 183-193.	0.5	6
41	Design of a podand fluoroionophore and its recognition function for lead ion Bunseki Kagaku, 2002, 51, 681-687.	0.2	6
42	Design of Supramolecular Cyclodextrin Complex Sensors for Ion and Molecule Recognition in Water. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2004, 50, 87-94.	1.6	6
43	Integration Methods of Cyclodextrins on Gold and Carbon Electrodes for Electrochemical Sensors. Journal of Carbon Research, 2019, 5, 78.	2.7	6
44	A novel electrochemical sugar recognition system using a ruthenium complex and phenylboronic acid assembled on gold nanoparticles. Analytical Methods, 2014, 6, 8874-8877.	2.7	5
45	Design and Function of Fluorescent Silica Nanoparticles for Bacteria Detection. Journal of Ion Exchange, 2018, 29, 121-125.	0.3	5
46	Design of Saccharide Recognition Material Based on Boronic Acid Fluorophore/Cyclodextrin Gel. Journal of Ion Exchange, 2018, 29, 126-130.	0.3	5
47	Structural effects of ditopic azoprobe–cyclodextrin complexes on the selectivity of guest-induced supramolecular chirality. Chemical Communications, 2018, 54, 12690-12693.	4.1	5
48	Electrochemical Sensing of Adenosin Triphosphate by Specific Binding to Dipicolylamine Group in Cyclodextrin Supramolecular Complex. ACS Applied Bio Materials, 2021, 4, 3041-3045.	4.6	5
49	Preparation of Saccharide Exchange Membrane Modified by Phenylboronic Acid Azoprobe/Polyamidoamine (PAMAM) Dendrimer. Journal of Ion Exchange, 2014, 25, 146-150.	0.3	5
50	Ratiometric fluorescence sensing of $\langle scp \rangle d \langle scp \rangle$ -allulose using an inclusion complex of \hat{I}^3 -cyclodextrin with a benzoxaborole-based probe. RSC Advances, 2022, 12, 12145-12151.	3.6	5
51	Simple and Rapid Endotoxin Recognition Using a Dipicolylamine-Modified Fluorescent Probe with Picomolar-Order Sensitivity. ACS Omega, 2022, 7, 25891-25897.	3.5	5
52	Alkali Metal Ion Recognition by Amphiphilic Crown Ether Azoprobe-Cyclodextrin Complex in Water. Bunseki Kagaku, 2011, 60, 845-852.	0.2	4
53	Design and Function of Novel Azoprobe Possessing Multipoint Binding Sites for Dopamine Recognition. Bunseki Kagaku, 2012, 61, 213-219.	0.2	4
54	Development of Supramolecular Analytical Reagents Based on Ion Exchange and Host-Guest Interactions. Journal of Ion Exchange, 2008, 19, 148-155.	0.3	3

#	Article	IF	CITATIONS
55	Effect of Spacer Length in Pyrene-Modified-Phenylboronic Acid Probe/CyD Complexes on Fluorescence-based Recognition of Monosaccharides in Aqueous Solution. Analytical Sciences, 2021, 37, 721-726.	1.6	2
56	Study on the Development of Supramolecular Complexes Possessing Molecular Recognition and Ion Exchange Functions. Journal of Ion Exchange, 2015, 26, 15-22.	0.3	1
57	Micelle-Type Sensor for Saccharide Recognition by Using Boronic Acid Fluorescence Amphiphilic Probe and Surfactants. Solvent Extraction and Ion Exchange, 2021, 39, 668-677.	2.0	1
58	PREPARATION OF POROUS SPHERICAL HYDROXYAPATITE AGGLOMERATES INTERACTED WITH CYCLODEXTRIN. Phosphorus Research Bulletin, 2010, 24, 54-61.	0.6	1
59	NMR Investigation of the Supramolecular Complex Formed by a Phenylboronic Acid-Ferrocene Electroactive Probe and Native or Derivatized \hat{l}^2 -Cyclodextrin. International Journal of Molecular Sciences, 2022, 23, 6045.	4.1	1
60	Design and Function of Proton-Ionizable Cyclam Fluoroionophore for Zinc (II) Ion Sensing in Water. Journal of Ion Exchange, 2003, 14, 337-340.	0.3	0
61	Phosphate Derivative Recognition Using Polyamide Amine Dendrimer Reagent Modified by Dipicorylamine Ligand. Bunseki Kagaku, 2022, 71, 167-178.	0.2	0