
Keiichi Tomishige

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7786334/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Catalytic Reduction of Biomass-Derived Furanic Compounds with Hydrogen. ACS Catalysis, 2013, 3, 2655-2668.	5.5	584
2	Glycerol conversion in the aqueous solution under hydrogen over Ru/C + an ion-exchange resin and its reaction mechanism. Journal of Catalysis, 2006, 240, 213-221.	3.1	454
3	Studies on Carbon Deposition in CO2Reforming of CH4over Nickel–Magnesia Solid Solution Catalysts. Journal of Catalysis, 1999, 181, 91-103.	3.1	396
4	Heterogeneous catalysis of the glycerol hydrogenolysis. Catalysis Science and Technology, 2011, 1, 179.	2.1	363
5	Direct hydrogenolysis of glycerol into 1,3-propanediol over rhenium-modified iridium catalyst. Journal of Catalysis, 2010, 272, 191-194.	3.1	355
6	Catalytic performance and characterization of Ni-Fe catalysts for the steam reforming of tar from biomass pyrolysis to synthesis gas. Applied Catalysis A: General, 2011, 392, 248-255.	2.2	297
7	Methane reforming to synthesis gas over Ni catalysts modified with noble metals. Applied Catalysis A: General, 2011, 408, 1-24.	2.2	295
8	Reaction mechanism of the glycerol hydrogenolysis to 1,3-propanediol over Ir–ReOx/SiO2 catalyst. Applied Catalysis B: Environmental, 2011, 105, 117-127.	10.8	293
9	Total Hydrogenation of Furfural and 5-Hydroxymethylfurfural over Supported Pd–Ir Alloy Catalyst. ACS Catalysis, 2014, 4, 2718-2726.	5.5	289
10	Modification of Rh/SiO2 catalyst for the hydrogenolysis of glycerol in water. Applied Catalysis B: Environmental, 2010, 94, 318-326.	10.8	253
11	Total Hydrogenation of Furfural over a Silicaâ€Supported Nickel Catalyst Prepared by the Reduction of a Nickel Nitrate Precursor. ChemCatChem, 2012, 4, 1791-1797.	1.8	241
12	Title is missing!. Catalysis Letters, 1999, 58, 225-229.	1.4	239
13	Chemoselective hydrogenolysis of tetrahydrofurfuryl alcohol to 1,5-pentanediol. Chemical Communications, 2009, , 2035.	2.2	232
14	Catalytic properties and structure of zirconia catalysts for direct synthesis of dimethyl carbonate from methanol and carbon dioxide. Journal of Catalysis, 2000, 192, 355-362.	3.1	230
15	Catalytic performance of Rh/SiO2 in glycerol reaction under hydrogen. Green Chemistry, 2007, 9, 582.	4.6	229
16	Development of a Ru/C catalyst for glycerol hydrogenolysis in combination with an ion-exchange resin. Applied Catalysis A: General, 2007, 318, 244-251.	2.2	220
17	Catalytic and direct synthesis of dimethyl carbonate starting from carbon dioxide using CeO2-ZrO2 solid solution heterogeneous catalyst: effect of H2O removal from the reaction system. Applied Catalysis A: General, 2002, 237, 103-109.	2.2	215
18	Catalytic performance and characterization of Ni–Co catalysts for the steam reforming of biomass tar to synthesis gas. Fuel, 2013, 112, 654-661.	3.4	215

#	Article	IF	CITATIONS
19	One-pot selective conversion of furfural into 1,5-pentanediol over a Pd-added Ir–ReO _x /SiO ₂ bifunctional catalyst. Green Chemistry, 2014, 16, 617-626.	4.6	215
20	Promoting effect of Mo on the hydrogenolysis of tetrahydrofurfuryl alcohol to 1,5-pentanediol over Rh/SiO2. Journal of Catalysis, 2009, 267, 89-92.	3.1	212
21	Highly active metal–acid bifunctional catalyst system for hydrogenolysis of glycerol under mild reaction conditions. Catalysis Communications, 2005, 6, 645-649.	1.6	211
22	Glycerol hydrogenolysis to 1,2-propanediol catalyzed by a heat-resistant ion-exchange resin combined with Ru/C. Applied Catalysis A: General, 2007, 329, 30-35.	2.2	211
23	Total hydrogenation of furan derivatives over silica-supported Ni–Pd alloy catalyst. Catalysis Communications, 2010, 12, 154-156.	1.6	210
24	Direct synthesis of organic carbonates from the reaction of CO2 with methanol and ethanol over CeO2 catalysts. Catalysis Today, 2006, 115, 95-101.	2.2	207
25	Selective hydrogenolysis and hydrogenation using metal catalysts directly modified with metal oxide species. Green Chemistry, 2017, 19, 2876-2924.	4.6	206
26	Development of highly stable nickel catalyst for methane-steam reaction under low steam to carbon ratio. Applied Catalysis A: General, 1996, 136, 49-56.	2.2	204
27	Promoting effect of Pt, Pd and Rh noble metals to the Ni0.03Mg0.97O solid solution catalysts for the reforming of CH4 with CO2. Applied Catalysis A: General, 1997, 165, 335-347.	2.2	196
28	Development of Ni catalysts for tar removal by steam gasification of biomass. Applied Catalysis B: Environmental, 2006, 68, 160-170.	10.8	196
29	Rapid synthesis of unsaturated alcohols under mild conditions by highly selective hydrogenation. Chemical Communications, 2013, 49, 7034.	2.2	195
30	Redox Properties of CeO ₂ at Low Temperature: The Direct Synthesis of Imines from Alcohol and Amine. Angewandte Chemie - International Edition, 2015, 54, 864-867.	7.2	189
31	Comparative study of Rh–MoOx and Rh–ReOx supported on SiO2 for the hydrogenolysis of ethers and polyols. Applied Catalysis B: Environmental, 2012, 111-112, 27-37.	10.8	184
32	C–O bond hydrogenolysis of cyclic ethers with OH groups over rhenium-modified supported iridium catalysts. Journal of Catalysis, 2012, 294, 171-183.	3.1	183
33	Metal catalysts for steam reforming of tar derived from the gasification of lignocellulosic biomass. Bioresource Technology, 2015, 178, 53-64.	4.8	175
34	Direct Cyclic Carbonate Synthesis from CO ₂ and Diol over Carboxylation/Hydration Cascade Catalyst of CeO ₂ with 2-Cyanopyridine. ACS Catalysis, 2014, 4, 1893-1896.	5.5	167
35	Steam reforming of tar from pyrolysis of biomass over Ni/Mg/Al catalysts prepared from hydrotalcite-like precursors. Applied Catalysis B: Environmental, 2011, 102, 528-538.	10.8	166
36	Catalytic materials for the hydrogenolysis of glycerol to 1,3-propanediol. Journal of Materials Chemistry A, 2014, 2, 6688-6702.	5.2	166

#	Article	IF	CITATIONS
37	Solid acid co-catalyst for the hydrogenolysis of glycerol to 1,3-propanediol over Ir-ReOx/SiO2. Applied Catalysis A: General, 2012, 433-434, 128-134.	2.2	164
38	Chemoselective Hydrogenolysis of Tetrahydropyranâ€2â€methanol to 1,6â€Hexanediol over Rheniumâ€Modified Carbon‣upported Rhodium Catalysts. ChemCatChem, 2010, 2, 547-555.	1.8	159
39	Regenerability of Hydrotalciteâ€Derived Nickel–Iron Alloy Nanoparticles for Syngas Production from Biomass Tar. ChemSusChem, 2014, 7, 510-522.	3.6	159
40	Title is missing!. Catalysis Letters, 2001, 76, 71-74.	1.4	158
41	Catalytic Performance and Catalyst Structure of Nickel–Magnesia Catalysts for CO2 Reforming of Methane. Journal of Catalysis, 1999, 184, 479-490.	3.1	157
42	Mechanism of the hydrogenolysis of ethers over silica-supported rhodium catalyst modified with rhenium oxide. Journal of Catalysis, 2011, 280, 221-229.	3.1	156
43	Ceriaâ€Catalyzed Conversion of Carbon Dioxide into Dimethyl Carbonate with 2â€Cyanopyridine. ChemSusChem, 2013, 6, 1341-1344.	3.6	153
44	Catalytic performance and properties of ceria based catalysts for cyclic carbonate synthesis from glycol and carbon dioxide. Green Chemistry, 2004, 6, 206.	4.6	152
45	Selective production of cyclohexanol and methanol from guaiacol over Ru catalyst combined with MgO. Green Chemistry, 2014, 16, 2197-2203.	4.6	145
46	A Highly Active and Cokeâ€Resistant Steam Reforming Catalyst Comprising Uniform Nickel–Iron Alloy Nanoparticles. ChemSusChem, 2012, 5, 2312-2314.	3.6	144
47	Preparation of Ni–Cu/Mg/Al catalysts from hydrotalcite-like compounds for hydrogen production by steam reforming of biomass tar. International Journal of Hydrogen Energy, 2014, 39, 10959-10970.	3.8	144
48	Organic carbonate synthesis from CO2 and alcohol over CeO2 with 2-cyanopyridine: Scope and mechanistic studies. Journal of Catalysis, 2014, 318, 95-107.	3.1	142
49	One-Pot Conversion of Cellulose into <i>n</i> -Hexane over the Ir-ReO _{<i>x</i>} /SiO ₂ Catalyst Combined with HZSM-5. ACS Sustainable Chemistry and Engineering, 2014, 2, 1819-1827.	3.2	140
50	Performance and characterization of rhenium-modified Rh–Ir alloy catalyst for one-pot conversion of furfural into 1,5-pentanediol. Catalysis Science and Technology, 2014, 4, 2535-2549.	2.1	140
51	Recent progress in the development of catalysts for steam reforming of biomass tar model reaction. Fuel Processing Technology, 2020, 199, 106252.	3.7	139
52	Low-temperature catalytic upgrading of waste polyolefinic plastics into liquid fuels and waxes. Applied Catalysis B: Environmental, 2021, 285, 119805.	10.8	137
53	Production of 1,5-pentanediol from biomass via furfural and tetrahydrofurfuryl alcohol. Catalysis Today, 2012, 195, 136-143.	2.2	136
54	Catalytic CO ₂ conversion to organic carbonates with alcohols in combination with dehydration system. Catalysis Science and Technology, 2014, 4, 2830-2845.	2.1	136

#	Article	IF	CITATIONS
55	Direct conversion of <scp>CO₂</scp> with diols, aminoalcohols and diamines to cyclic carbonates, cyclic carbamates and cyclic ureas using heterogeneous catalysts. Journal of Chemical Technology and Biotechnology, 2014, 89, 19-33.	1.6	135
56	Catalytic Performance and Carbon Deposition Behavior of a NiOâ^'MgO Solid Solution in Methane Reforming with Carbon Dioxide under Pressurized Conditions. Industrial & Engineering Chemistry Research, 2000, 39, 1891-1897.	1.8	131
57	Catalytic performance of manganese-promoted nickel catalysts for the steam reforming of tar from biomass pyrolysis to synthesis gas. Fuel, 2013, 103, 122-129.	3.4	130
58	Oneâ€Pot Conversion of Sugar and Sugar Polyols to <i>n</i> â€Alkanes without CC Dissociation over the Irâ€ReO _{<i>x</i>} /SiO ₂ Catalyst Combined with Hâ€ZSMâ€5. ChemSusChem, 2013, 613-621.	63.6	128
59	Hydrogenolysis of 1,2â€Propanediol for the Production of Biopropanols from Glycerol. ChemSusChem, 2010, 3, 728-736.	3.6	125
60	Heterogeneous CeO2 catalyst for the one-pot synthesis of organic carbamates from amines, CO2 and alcohols. Green Chemistry, 2011, 13, 3406.	4.6	123
61	Catalytic Total Hydrodeoxygenation of Biomassâ€Derived Polyfunctionalized Substrates to Alkanes. ChemSusChem, 2015, 8, 1114-1132.	3.6	123
62	Catalytic performance of Ni/CeO2/Al2O3 modified with noble metals in steam gasification of biomass. Catalysis Today, 2008, 131, 146-155.	2.2	122
63	Hydrodeoxygenation of Vicinal OH Groups over Heterogeneous Rhenium Catalyst Promoted by Palladium and Ceria Support. Angewandte Chemie - International Edition, 2015, 54, 1897-1900.	7.2	122
64	Energy Efficient Production of Hydrogen and Syngas from Biomass:  Development of Low-Temperature Catalytic Process for Cellulose Gasification. Environmental Science & Technology, 2002, 36, 4476-4481.	4.6	119
65	Comparative study on steam reforming of model aromatic compounds of biomass tar over Ni and Ni–Fe alloy nanoparticles. Applied Catalysis A: General, 2015, 506, 151-162.	2.2	119
66	Structure of the Active Sites on H3PO4/ZrO2 Catalysts for Dimethyl Carbonate Synthesis from Methanol and Carbon Dioxide. Journal of Physical Chemistry B, 2001, 105, 10653-10658.	1.2	116
67	Nickel–iron alloy catalysts for reforming of hydrocarbons: preparation, structure, and catalytic properties. Catalysis Science and Technology, 2017, 7, 3952-3979.	2.1	116
68	Structure of ReO _{<i>x</i>} Clusters Attached on the Ir Metal Surface in Ir–ReO _{<i>x</i>} /SiO ₂ for the Hydrogenolysis Reaction. Journal of Physical Chemistry C, 2012, 116, 23503-23514.	1.5	115
69	Selective Hydrogenation of Crotonaldehyde to Crotyl Alcohol over Metal Oxide Modified Ir Catalysts and Mechanistic Insight. ACS Catalysis, 2016, 6, 3600-3609.	5.5	115
70	Performance, Structure, and Mechanism of ReO _{<i>x</i>} –Pd/CeO ₂ Catalyst for Simultaneous Removal of Vicinal OH Groups with H ₂ . ACS Catalysis, 2016, 6, 3213-3226.	5.5	114
71	Demethoxylation of guaiacol and methoxybenzenes over carbon-supported Ru–Mn catalyst. Applied Catalysis B: Environmental, 2016, 182, 193-203.	10.8	113
72	Production of Biobutanediols by the Hydrogenolysis of Erythritol. ChemSusChem, 2012, 5, 1991-1999.	3.6	112

#	Article	IF	CITATIONS
73	Low pressure CO2 to dimethyl carbonate by the reaction with methanol promoted by acetonitrile hydration. Chemical Communications, 2009, , 4596.	2.2	111
74	A comparison of Rh/CeO2/SiO2 catalysts with steam reforming catalysts, dolomite and inert materials as bed materials in low throughput fluidized bed gasification systems. Biomass and Bioenergy, 2004, 26, 269-279.	2.9	106
75	Promoting effect of MgO addition to Pt/Ni/CeO2/Al2O3 in the steam gasification of biomass. Applied Catalysis B: Environmental, 2009, 86, 36-44.	10.8	106
76	Deoxydehydration with Molecular Hydrogen over Ceria-Supported Rhenium Catalyst with Gold Promoter. ACS Catalysis, 2016, 6, 6393-6397.	5.5	106
77	Tandem Carboxylationâ€Hydration Reaction System from Methanol, CO ₂ and Benzonitrile to Dimethyl Carbonate and Benzamide Catalyzed by CeO ₂ . ChemCatChem, 2011, 3, 365-370.	1.8	104
78	Gasification of different biomasses in a dual-bed gasifier system combined with novel catalysts with high energy efficiency. Applied Catalysis A: General, 2004, 267, 95-102.	2.2	103
79	Heterogeneous CeO2-catalyzed selective synthesis of cyclic carbamates from CO2 and aminoalcohols in acetonitrile solvent. Journal of Catalysis, 2013, 305, 191-203.	3.1	103
80	Title is missing!. Catalysis Letters, 2000, 66, 59-62.	1.4	102
81	Demonstration of real biomass gasification drastically promoted by effective catalyst. Applied Catalysis A: General, 2003, 246, 103-116.	2.2	100
82	Catalytic synthesis of dialkyl carbonate from low pressure CO2 and alcohols combined with acetonitrile hydration catalyzed by CeO2. Applied Catalysis A: General, 2010, 384, 165-170.	2.2	98
83	Highly efficient synthesis of cyclic ureas from CO2 and diamines by a pure CeO2 catalyst using a 2-propanol solvent. Green Chemistry, 2013, 15, 1567.	4.6	98
84	Direct Copolymerization of CO2 and Diols. Scientific Reports, 2016, 6, 24038.	1.6	98
85	Characterization of Re–Pd/SiO ₂ Catalysts for Hydrogenation of Stearic Acid. ACS Catalysis, 2015, 5, 7034-7047.	5.5	96
86	Selective hydrogenation of higher saturated carboxylic acids to alcohols using a ReOx–Pd/SiO2 catalyst. Catalysis Science and Technology, 2012, 2, 2221.	2.1	94
87	Promoting effect of Pt addition to Ni/CeO2/Al2O3 catalyst for steam gasification of biomass. Catalysis Communications, 2008, 9, 195-201.	1.6	93
88	Selective transformation of hemicellulose (xylan) into n-pentane, pentanols or xylitol over a rhenium-modified iridium catalyst combined with acids. Green Chemistry, 2016, 18, 165-175.	4.6	93
89	A novel catalytic process for cellulose gasification to synthesis gas. Catalysis Communications, 2001, 2, 63-68.	1.6	92
90	Promoting Effect of Re Addition to Rh/SiO2 on Glycerol Hydrogenolysis. Chemistry Letters, 2009, 38, 540-541.	0.7	91

#	Article	IF	CITATIONS
91	Catalyst property of Co–Fe alloy particles in the steam reforming of biomass tar and toluene. Applied Catalysis B: Environmental, 2012, 121-122, 95-104.	10.8	90
92	Syngas production from methane reforming with CO2/H2O and O2 over NiO–MgO solid solution catalyst in fluidized bed reactors. Catalysis Today, 2004, 89, 405-418.	2.2	88
93	Characterization and catalytic performance of hydrotalcite-derived Ni-Cu alloy nanoparticles catalysts for steam reforming of 1-methylnaphthalene. Applied Catalysis B: Environmental, 2016, 192, 171-181.	10.8	87
94	Hydrogenation of dicarboxylic acids to diols over Re–Pd catalysts. Catalysis Science and Technology, 2016, 6, 5668-5683.	2.1	87
95	CeO2-catalyzed direct synthesis of dialkylureas from CO2 and amines. Journal of Catalysis, 2016, 343, 75-85.	3.1	86
96	Dimethyl carbonate synthesis by oxidative carbonylation on activated carbon supported CuCl2 catalysts: catalytic properties and structural change. Applied Catalysis A: General, 1999, 181, 95-102.	2.2	84
97	Additive effect of noble metals on NiO-MgO solid solution in oxidative steam reforming of methane under atmospheric and pressurized conditions. Applied Catalysis A: General, 2006, 299, 145-156.	2.2	84
98	Recent development of production technology of diesel- and jet-fuel-range hydrocarbons from inedible biomass. Fuel Processing Technology, 2019, 193, 404-422.	3.7	83
99	Catalytic Performance of Rh/CeO2 in the Gasification of Cellulose to Synthesis Gas at Low Temperature. Industrial & Engineering Chemistry Research, 2001, 40, 5894-5900.	1.8	82
100	Development of Ni-Based Catalysts for Steam Reforming of Tar Derived from Biomass Pyrolysis. Chinese Journal of Catalysis, 2012, 33, 583-594.	6.9	80
101	Selective Hydrogenolysis of Glycerol to 1,3-Propanediol over Rhenium-Oxide-Modified Iridium Nanoparticles Coating Rutile Titania Support. ACS Catalysis, 2019, 9, 10913-10930.	5.5	80
102	Catalyst performance in reforming of tar derived from biomass over noble metal catalysts. Green Chemistry, 2003, 5, 399.	4.6	77
103	Production of Renewable Hexanols from Mechanocatalytically Depolymerized Cellulose by Using Irâ€ReO _{<i>x</i>} /SiO ₂ catalyst. ChemSusChem, 2015, 8, 628-635.	3.6	77
104	Novel Route to Propylene Carbonate: Selective Synthesis from Propylene Glycol and Carbon Dioxide. Catalysis Letters, 2004, 95, 45-49.	1.4	75
105	Selective Hydrogenation of Lactic Acid to 1,2â€Propanediol over Highly Active Ruthenium–Molybdenum Oxide Catalysts. ChemSusChem, 2015, 8, 1170-1178.	3.6	75
106	Hydrogenolysis of CO bond over Re-modified Ir catalyst in alkane solvent. Applied Catalysis A: General, 2013, 468, 418-425.	2.2	74
107	Production of renewable hydrogen by steam reforming of tar from biomass pyrolysis over supported Co catalysts. International Journal of Hydrogen Energy, 2013, 38, 3572-3581.	3.8	74
108	Perspective on catalyst development for glycerol reduction to C3 chemicals with molecular hydrogen. Research on Chemical Intermediates, 2018, 44, 3879-3903.	1.3	74

#	Article	IF	CITATIONS
109	Catalytic performance and characterization of Co/Mg/Al catalysts prepared from hydrotalcite-like precursors for the steam gasification of biomass. Applied Catalysis B: Environmental, 2014, 150-151, 82-92.	10.8	73
110	Erythritol: Another C4 Platform Chemical in Biomass Refinery. ACS Omega, 2020, 5, 2520-2530.	1.6	73
111	Preferential CO Oxidation in a H ₂ -Rich Stream on Ptâ^'ReO _{<i>x</i>} /SiO ₂ : Catalyst Structure and Reaction Mechanism. Journal of Physical Chemistry C, 2010, 114, 6518-6526.	1.5	72
112	Selective oxidation of glycerol to dihydroxyacetone over a Pd–Ag catalyst. Catalysis Science and Technology, 2012, 2, 1150.	2.1	72
113	Role of Re Species and Acid Cocatalyst on Ir-ReO _x /SiO ₂ in the C-O Hydrogenolysis of Biomass-Derived Substrates. Chemical Record, 2014, 14, 1041-1054.	2.9	72
114	Autothermal CO2 reforming of methane over NiO–MgO solid solution catalysts under pressurized condition. Catalysis Today, 2000, 63, 439-445.	2.2	71
115	Title is missing!. Catalysis Letters, 2002, 84, 69-74.	1.4	71
116	Comparative study between fluidized bed and fixed bed reactors in methane reforming combined with methane combustion for the internal heat supply under pressurized condition. Applied Catalysis A: General, 2002, 223, 225-238.	2.2	70
117	Stable Low-Valence ReO _{<i>x</i>} Cluster Attached on Rh Metal Particles Formed by Hydrogen Reduction and Its Formation Mechanism. Journal of Physical Chemistry C, 2012, 116, 3079-3090.	1.5	70
118	Mechanistic Study of Hydrogen-Driven Deoxydehydration over Ceria-Supported Rhenium Catalyst Promoted by Au Nanoparticles. ACS Catalysis, 2018, 8, 584-595.	5.5	70
119	Highly active iridium–rhenium catalyst condensed on silica support for hydrogenolysis of glycerol to 1,3-propanediol. Applied Catalysis B: Environmental, 2019, 256, 117775.	10.8	70
120	CO ₂ Conversion with Alcohols and Amines into Carbonates, Ureas, and Carbamates over CeO ₂ Catalyst in the Presence and Absence of 2â€Cyanopyridine. Chemical Record, 2019, 19, 1354-1379.	2.9	70
121	Catalytic Conversions of Furfural to Pentanediols. Catalysis Surveys From Asia, 2015, 19, 249-256.	1.0	67
122	Promoting effect of Ru on Ir-ReOx/SiO2 catalyst in hydrogenolysis of glycerol. Journal of Molecular Catalysis A, 2014, 388-389, 177-187.	4.8	65
123	Noble metal promoted Ni0.03Mg0.97O solid solution catalysts for the reforming of CH4 with CO2. Catalysis Letters, 1996, 39, 91-95.	1.4	64
124	Direct Synthesis of Alternating Polycarbonates from CO ₂ and Diols by Using a Catalyst System of CeO ₂ and 2-Furonitrile. ACS Sustainable Chemistry and Engineering, 2019, 7, 6304-6315.	3.2	64
125	Selective hydrogenation of nitroarenes to aminoarenes using a MoO _x -modified Ru/SiO ₂ catalyst under mild conditions. Chemical Communications, 2017, 53, 3377-3380.	2.2	63
126	Oxidative steam reforming of methane under atmospheric and pressurized conditions over Pd/NiO–MgO solid solution catalysts. Applied Catalysis A: General, 2006, 308, 1-12.	2.2	62

#	Article	IF	CITATIONS
127	Cu Sub-Nanoparticles on Cu/CeO ₂ as an Effective Catalyst for Methanol Synthesis from Organic Carbonate by Hydrogenation. ACS Catalysis, 2016, 6, 376-380.	5.5	62
128	Reaction between N2O and CH4 over Fe ion-exchanged BEA zeolite catalyst: A possible role of nascent oxygen transients from N2O. Physical Chemistry Chemical Physics, 2003, 5, 3328.	1.3	61
129	Catalyst Development for the Hydrogenolysis of Biomass-Derived Chemicals to Value-Added Ones. Catalysis Surveys From Asia, 2011, 15, 111-116.	1.0	61
130	Promoting effect of trace Pd on hydrotalcite-derived Ni/Mg/Al catalyst in oxidative steam reforming of biomass tar. Applied Catalysis B: Environmental, 2015, 179, 412-421.	10.8	61
131	Catalytic hydrogenation of amino acids to amino alcohols with complete retention of configuration. Chemical Communications, 2014, 50, 6656.	2.2	57
132	Effect of hydrogen on n-butane isomerization over Pt/SO42â^'-ZrO2 and Pt/SiO2+SO42â^'-ZrO2. Applied Catalysis A: General, 2000, 194-195, 383-393.	2.2	56
133	Hydrodeoxygenation of Guaiacol to Phenol over Ceria-Supported Iron Catalysts. ACS Catalysis, 2020, 10, 14624-14639.	5.5	55
134	Effective methane reforming with CO2 and O2 under pressurized condition using NiO–MgO and fluidized bed reactor. Catalysis Communications, 2001, 2, 11-15.	1.6	54
135	<i>In Situ</i> Formed Fe Cation Modified Ir/MgO Catalyst for Selective Hydrogenation of Unsaturated Carbonyl Compounds. ACS Catalysis, 2017, 7, 5103-5111.	5.5	53
136	Catalytic Production of Branched Small Alkanes from Biohydrocarbons. ChemSusChem, 2015, 8, 2472-2475.	3.6	52
137	Synthesis of 2â€Butanol by Selective Hydrogenolysis of 1,4â€Anhydroerythritol over Molybdenum Oxideâ€Modified Rhodiumâ€Supported Silica. ChemSusChem, 2016, 9, 1680-1688.	3.6	51
138	Transformation of Sugars into Chiral Polyols over a Heterogeneous Catalyst. Angewandte Chemie - International Edition, 2018, 57, 8058-8062.	7.2	51
139	Role of Catalyst and Its Fluidization in the Catalytic Gasification of Biomass to Syngas at Low Temperature. Industrial & Engineering Chemistry Research, 2002, 41, 4567-4575.	1.8	50
140	Direct dimethyl carbonate synthesis from CO ₂ and methanol catalyzed by CeO ₂ and assisted by 2-cyanopyridine: a cradle-to-gate greenhouse gas emission study. Green Chemistry, 2021, 23, 457-469.	4.6	50
141	Insight into the Mechanism of Hydrogenation of Amino Acids to Amino Alcohols Catalyzed by a Heterogeneous MoO _{<i>x</i>} â€Modified Rh Catalyst. Chemistry - A European Journal, 2015, 21, 3097-3107.	1.7	49
142	Direct Catalytic Synthesis of <i>N</i> â€Arylcarbamates from CO ₂ , Anilines and Alcohols. ChemCatChem, 2018, 10, 4821-4825.	1.8	49
143	Oxidative steam reforming of methane over Ni/α-Al2O3 modified with trace noble metals. Applied Catalysis A: General, 2009, 358, 186-192.	2.2	48
144	Catalytic performance and characterization of Co–Fe bcc alloy nanoparticles prepared from hydrotalcite-like precursors in the steam gasification of biomass-derived tar. Applied Catalysis B: Environmental, 2014, 160-161, 701-715.	10.8	47

#	Article	IF	CITATIONS
145	Regioselectivity and Reaction Mechanism of Ruâ€Catalyzed Hydrogenolysis of Squalane and Model Alkanes. ChemSusChem, 2017, 10, 189-198.	3.6	47
146	Ultra-stable Ni catalysts for methane reforming by carbon dioxide. Catalysis Surveys From Asia, 1998, 2, 3-15.	1.2	45
147	Promotion of Oxidation and Reduction of Rh Species by Interaction of Rh and CeO ₂ over Rh/CeO ₂ /SiO ₂ . Journal of Physical Chemistry C, 2008, 112, 2574-2583.	1.5	44
148	High catalytic activity of Co-Fe/α-Al2O3 in the steam reforming of toluene in the presence of hydrogen. Applied Catalysis B: Environmental, 2013, 140-141, 652-662.	10.8	44
149	Characterization of oil-extracted residue biomass of Botryococcus braunii as a biofuel feedstock and its pyrolytic behavior. Applied Energy, 2014, 132, 475-484.	5.1	44
150	One-pot catalytic selective synthesis of 1,4-butanediol from 1,4-anhydroerythritol and hydrogen. Green Chemistry, 2018, 20, 2547-2557.	4.6	44
151	Substrate-Specific Heterogeneous Catalysis of CeO ₂ by Entropic Effects via Multiple Interactions. ACS Catalysis, 2015, 5, 20-26.	5.5	43
152	Selective Hydrodeoxygenation of 2-Furancarboxylic Acid to Valeric Acid over Molybdenum-Oxide-Modified Platinum Catalyst. ACS Sustainable Chemistry and Engineering, 2016, 4, 6253-6257.	3.2	43
153	Highly Efficient Synthesis of Alkyl <i>N</i> -Arylcarbamates from CO ₂ , Anilines, and Branched Alcohols with a Catalyst System of CeO ₂ and 2-Cyanopyridine. ACS Sustainable Chemistry and Engineering, 2019, 7, 16795-16802.	3.2	43
154	Effective NbO _{<i>x</i>} -Modified Ir/SiO ₂ Catalyst for Selective Gas-Phase Hydrogenation of Crotonaldehyde to Crotyl Alcohol. ACS Sustainable Chemistry and Engineering, 2017, 5, 3685-3697.	3.2	42
155	One-pot synthesis of 1,3-butanediol by 1,4-anhydroerythritol hydrogenolysis over a tungsten-modified platinum on silica catalyst. Green Chemistry, 2020, 22, 2375-2380.	4.6	42
156	CO hydrogenation over RhVO4/SiO2, Rh/V2O3 and Rh/SiO2 catalysts: reduction and regeneration of RhVO4. Applied Catalysis A: General, 2002, 236, 113-120.	2.2	41
157	Recent Developments of Heterogeneous Catalysts for Hydrogenation of Carboxylic Acids to their Corresponding Alcohols. Asian Journal of Organic Chemistry, 2020, 9, 126-143.	1.3	41
158	Design of supported metal catalysts modified with metal oxides for hydrodeoxygenation of biomass-related molecules. Current Opinion in Green and Sustainable Chemistry, 2020, 22, 13-21.	3.2	41
159	Thermographical observation of catalyst bed temperature in oxidative steam reforming of methane over Ni supported on α-alumina granules: Effect of Ni precursors. Catalysis Today, 2005, 104, 7-17.	2.2	39
160	Oxidative steam reforming of methane over Ni/α-Al2O3 modified with trace Pd. Applied Catalysis A: General, 2008, 351, 217-225.	2.2	39
161	Self-assembled hybrid metal oxide base catalysts prepared by simply mixing with organic modifiers. Nature Communications, 2015, 6, 8580.	5.8	38
162	Selective Hydrodeoxygenation of Cyclic Vicinal Diols to Cyclic Alcohols over Tungsten Oxide–Palladium Catalysts. ChemSusChem, 2014, 7, 2185-2192.	3.6	37

#	Article	IF	CITATIONS
163	Supported Metal Catalysts for Total Hydrogenation of Furfural and 5-Hydroxymethylfurfural. Journal of the Japan Petroleum Institute, 2017, 60, 1-9.	0.4	37
164	Preparation of Highly Active Monometallic Rhenium Catalysts for Selective Synthesis of 1,4â€Butanediol from 1,4â€Anhydroerythritol. ChemSusChem, 2019, 12, 3615-3626.	3.6	37
165	Catalytic performance and QXAFS analysis of Ni catalysts modified with Pd for oxidative steam reforming of methane. Catalysis Today, 2008, 132, 101-108.	2.2	36
166	Preferential CO oxidation in a H2-rich stream promoted by ReOx species attached to Pt metal particles. Chemical Communications, 2009, , 5308.	2.2	36
167	Catalytic conversion of sorbitol to gasoline-ranged products without external hydrogen over Pt-modified Ir-ReO x /SiO 2. Catalysis Today, 2016, 269, 122-131.	2.2	36
168	Hydrogenolysis of glycerol with in-situ produced H 2 by aqueous-phase reforming of glycerol using Pt-modified Ir-ReO x /SiO 2 catalyst. Catalysis Today, 2018, 303, 106-116.	2.2	36
169	Reaction of CO2 With Alcohols to Linear-, Cyclic-, and Poly-Carbonates Using CeO2-Based Catalysts. Frontiers in Energy Research, 2020, 8, .	1.2	35
170	Conversion of Glycerol to Ethylene Glycol over Pt-modified Ni Catalyst. Chemistry Letters, 2010, 39, 506-507.	0.7	34
171	Catalytic gasification of oil-extracted residue biomass of Botryococcus braunii. Bioresource Technology, 2015, 191, 452-459.	4.8	33
172	Regioselective hydrogenolysis of alga-derived squalane over silica-supported ruthenium‑vanadium catalyst. Fuel Processing Technology, 2018, 176, 249-257.	3.7	31
173	Selective Hydrogenolysis of C–O Bonds Using the Interaction of the Catalyst Surface and OH Groups. Topics in Current Chemistry, 2014, 353, 127-162.	4.0	29
174	Oxidative Cleavage of Vicinal Diols with the Combination of Platinum and Vanadium Catalysts and Molecular Oxygen. ChemCatChem, 2016, 8, 1732-1738.	1.8	29
175	An effective combination catalyst of CeO ₂ and zeolite for the direct synthesis of diethyl carbonate from CO ₂ and ethanol with 2,2-diethoxypropane as a dehydrating agent. Green Chemistry, 2020, 22, 7321-7327.	4.6	29
176	Catalytic performance and characterization of RhVO4/SiO2 for hydroformylation and CO hydrogenation. Journal of Molecular Catalysis A, 2006, 244, 201-212.	4.8	28
177	Formation of a New, Strongly Basic Nitrogen Anion by Metal Oxide Modification. Journal of the American Chemical Society, 2017, 139, 11857-11867.	6.6	27
178	Taming heterogeneous rhenium catalysis for the production of biomass-derived chemicals. Chinese Chemical Letters, 2020, 31, 1071-1077.	4.8	27
179	Lanthanide oxide modified nickel supported on mesoporous silica catalysts for dry reforming of methane. International Journal of Hydrogen Energy, 2021, 46, 31608-31622.	3.8	27
180	Hydrodeoxygenation of potential platform chemicals derived from biomass to fuels and chemicals. Green Chemistry, 2022, 24, 5652-5690.	4.6	27

#	Article	IF	CITATIONS
181	Oxidative Steam Reforming of Methane over Ni Catalysts Modified with Noble Metals. Journal of the Japan Petroleum Institute, 2007, 50, 287-298.	0.4	26
182	Selective hydrogenolysis of 2-furancarboxylic acid to 5-hydroxyvaleric acid derivatives over supported platinum catalysts. Green Chemistry, 2019, 21, 6133-6145.	4.6	26
183	Selective Hydrogenolysis of Erythritol over Irâ^'ReO _{<i>x</i>} /Rutileâ€TiO ₂ Catalyst. ChemSusChem, 2021, 14, 642-654.	3.6	26
184	Structure and performance relationship of silica-supported platinum-tungsten catalysts in selective C-O hydrogenolysis of glycerol and 1,4-anhydroerythritol. Applied Catalysis B: Environmental, 2021, 292, 120164.	10.8	26
185	Development of Ni- and Co-based Alloy Catalysts for Steam Reforming of Biomass Tar. Journal of the Japan Petroleum Institute, 2013, 56, 253-266.	0.4	25
186	Scope and reaction mechanism of CeO2-catalyzed one-pot imine synthesis from alcohols and amines. Journal of Catalysis, 2020, 389, 285-296.	3.1	25
187	Promoting Effect of Mo on Alcohol Formation in Hydroformylation of Propylene and Ethylene on Mo-Rh/SiO2. Catalysis Letters, 2005, 103, 15-21.	1.4	24
188	Amination of Alcohols with Ammonia in Water over Rh–In Catalyst. Chemistry Letters, 2014, 43, 822-824.	0.7	24
189	Guaiacol Hydrodeoxygenation over Iron–Ceria Catalysts with Platinum Single-Atom Alloy Clusters as a Promoter. ACS Catalysis, 2021, 11, 12794-12814.	5.5	24
190	Novel biomass gasification method with high efficiency: catalytic gasification at low temperature. Green Chemistry, 2002, 4, 385-389.	4.6	23
191	Hydrodeoxygenation of C4–C6 sugar alcohols to diols or mono-alcohols with the retention of the carbon chain over a silica-supported tungsten oxide-modified platinum catalyst. Green Chemistry, 2021, 23, 5665-5679.	4.6	23
192	Novel Catalysts for Gasification of Biomass with High Conversion Efficiency. Catalysis Surveys From Asia, 2003, 7, 219-233.	1.0	22
193	Selective formation of 1-propanol via ethylene hydroformylation over the catalyst originated from RhVO4. Catalysis Communications, 2005, 6, 421-425.	1.6	22
194	Direct Synthesis of Unsaturated Sugars from Methyl Glycosides. ACS Catalysis, 2019, 9, 3725-3729.	5.5	22
195	Combination of supported bimetallic rhodium–molybdenum catalyst and cerium oxide for hydrogenation of amide. Science and Technology of Advanced Materials, 2015, 16, 014901.	2.8	21
196	Selective <i>N</i> -Methylation of Aniline to <i>N</i> -Methylaniline with CO ₂ and H ₂ by CeO ₂ -supported Cu Sub-nanoparticle Catalyst. Chemistry Letters, 2017, 46, 1243-1246.	0.7	21
197	Catalytic Conversion of Biomass. ChemCatChem, 2017, 9, 2613-2614.	1.8	21
198	Selective hydrogenation of amides to alcohols in water solvent over a heterogeneous CeO ₂ -supported Ru catalyst. Chemical Communications, 2018, 54, 7503-7506.	2.2	21

#	Article	IF	CITATIONS
199	Mechanistic Study on Deoxydehydration and Hydrogenation of Methyl Glycosides to Dideoxy Sugars over a ReO <i>_x</i> –Pd/CeO ₂ Catalyst. ACS Catalysis, 2020, 10, 12040-12051.	5.5	21
200	Detailed Characterization of MoO _{<i>x</i>} -Modified Rh Metal Particles by Ambient-Pressure XPS and DFT Calculations. Journal of Physical Chemistry C, 2021, 125, 4540-4549.	1.5	21
201	Reductive Conversion of Biomass-Derived Furancarboxylic Acids with Retention of Carboxylic Acid Moiety. Transactions of Tianjin University, 2021, 27, 165-179.	3.3	21
202	Direct synthesis of polycarbonate diols from atmospheric flow CO ₂ and diols without using dehydrating agents. Green Chemistry, 2021, 23, 5786-5796.	4.6	21
203	Title is missing!. Catalysis Letters, 2002, 83, 5-8.	1.4	20
204	Production of Gasoline Fuel from Algaâ€Derived Botryococcene by Hydrogenolysis over Ceria‣upported Ruthenium Catalyst. ChemCatChem, 2017, 9, 2701-2708.	1.8	20
205	Structure and Mechanism of Titania-Supported Platinum–Molybdenum Catalyst for Hydrodeoxygenation of 2-Furancarboxylic Acid to Valeric Acid. ACS Sustainable Chemistry and Engineering, 2019, 7, 9601-9612.	3.2	20
206	Reduction of sugar derivatives to valuable chemicals: utilization of asymmetric carbons. Catalysis Science and Technology, 2020, 10, 3805-3824.	2.1	20
207	Comprehensive Study on Ni- or Ir-Based Alloy Catalysts in the Hydrogenation of Olefins and Mechanistic Insight. ACS Catalysis, 2021, 11, 3293-3309.	5.5	20
208	Title is missing!. Catalysis Letters, 1999, 57, 145-149.	1.4	19
209	FTIR study of CO adsorption on Rh/MgO modified with Co, Ni, Fe, or CeO2 for the catalytic partial oxidation of methane. Physical Chemistry Chemical Physics, 2012, 14, 9204.	1.3	19
210	Title is missing!. Catalysis Letters, 2002, 79, 63-67.	1.4	18
211	Structure of catalytically active Rh–In bimetallic phase for amination of alcohols. RSC Advances, 2014, 4, 28664.	1.7	18
212	Efficient production of adipic acid from 2-methoxycyclohexanone by aerobic oxidation with a phosphotungstic acid catalyst. Green Chemistry, 2020, 22, 4962-4974.	4.6	18
213	Catalytic Performance and Analysis of Carbon Deposition in the Production of Synthesis Gas by Methane Reforming with Carbon Dioxide-Development of NiO-MgO Solid Solution Catalysts Sekiyu Gakkaishi (Journal of the Japan Petroleum Institute), 2001, 44, 65-79.	0.1	17
214	Title is missing!. Catalysis Letters, 2003, 85, 213-216.	1.4	17
215	Promoting Effect of Pt on Self-activation over NiO–MgO Solid Solution in Oxidative Steam Reforming of Methane. Catalysis Letters, 2005, 103, 277-281.	1.4	17
216	Oxidative Câ^'C Cleavage of Ketols over Vanadium–Carbon Catalysts. ChemCatChem, 2017, 9, 3412-3419.	1.8	17

#	Article	IF	CITATIONS
217	Demethoxylation of hydrogenated derivatives of guaiacol without external hydrogen over platinum catalyst. Molecular Catalysis, 2019, 471, 60-70.	1.0	17
218	Tungsten–zirconia-supported rhenium catalyst combined with a deoxydehydration catalyst for the one-pot synthesis of 1,4-butanediol from 1,4-anhydroerythritol. Reaction Chemistry and Engineering, 2020, 5, 1237-1250.	1.9	17
219	Deoxydehydration of Biomassâ€Derived Polyols Over Silverâ€Modified Ceriaâ€Supported Rhenium Catalyst with Molecular Hydrogen. ChemSusChem, 2022, 15, .	3.6	17
220	Performance and Characterization of a [PtMo6]/MgO Catalyst: The Catalytic Activity for NO–CO Reactions and Structural Analysis by EXAFS. Bulletin of the Chemical Society of Japan, 1997, 70, 1607-1614.	2.0	16
221	Biobased Cycloolefin Polymers: Carvone-Derived Cyclic Conjugated Diene with Reactive <i>exo</i> -Methylene Group for Regioselective and Stereospecific Living Cationic Polymerization. ACS Macro Letters, 2020, 9, 1178-1183.	2.3	16
222	Development of catalysts for natural gas reforming: Nickel-magnesia solid solution catalyst. Research on Chemical Intermediates, 1998, 24, 259-271.	1.3	15
223	A nickel–iridium alloy as an efficient heterogeneous catalyst for hydrogenation of olefins. Chemical Communications, 2019, 55, 10519-10522.	2.2	15
224	Catalytic performance of hydrotalcite-like-compound-derived Ni-metal alloy catalyst for toluene reforming with gasoline engine exhaust model gas as reforming agent. Fuel Processing Technology, 2021, 218, 106837.	3.7	15
225	Syngas Production from Gasification of Biomass over Rh/CeO ₂ /SiO ₂ Catalyst: Pyrogasification, Steam Reforming and CO ₂ Reforming. Journal of the Japan Petroleum Institute, 2003, 46, 322-327.	0.4	14
226	Titania-supported molybdenum oxide combined with Au nanoparticles as a hydrogen-driven deoxydehydration catalyst of diol compounds. Catalysis Science and Technology, 2022, 12, 2146-2161.	2.1	14
227	Oxidative coupling of methane by water as the oxidant on perovskite oxide catalysts. Catalysis Letters, 1996, 36, 21-24.	1.4	13
228	Synthesis of Hexane-Tetrols and -Triols with Fixed Hydroxyl Group Positions and Stereochemistry from Methyl Glycosides over Supported Metal Catalysts. ACS Sustainable Chemistry and Engineering, 2020, 8, 800-805.	3.2	13
229	Methane Reforming with Carbon Dioxide and Oxygen under Atmospheric and Pressurized Conditions Using Fixed- and Fluidized-Bed Reactors. ACS Symposium Series, 2002, , 303-315.	0.5	12
230	Recent Developments of Heterogeneous Catalysts for Selective Hydrogenation of Unsaturated Carbonyl Compounds to Unsaturated Alcohols. Journal of the Japan Petroleum Institute, 2019, 62, 106-119.	0.4	12
231	CeO ₂ -Catalyzed Synthesis of 2-Imidazolidinone from Ethylenediamine Carbamate. ACS Omega, 2021, 6, 27527-27535.	1.6	12
232	Synthesis of α-Hydroxy Ketones from Vicinal Diols by Selective Dehydrogenation over Ir–ReO <i>x</i> /SiO2 Catalyst. Chemistry Letters, 2014, 43, 334-336.	0.7	11
233	Transformation of Sugars into Chiral Polyols over a Heterogeneous Catalyst. Angewandte Chemie, 2018, 130, 8190-8194.	1.6	11
234	Reforming of toluene with simulated automobile exhaust gas over hydrotalcite-like-compound-derived Ni catalyst. Fuel Processing Technology, 2020, 209, 106545.	3.7	11

#	Article	IF	CITATIONS
235	The Catalytic Properties and Behavior of Carbon Deposition in CO2 Reforming of Methane on NiO-MgO Solid Solution Catalyst under High Pressure Sekiyu Gakkaishi (Journal of the Japan Petroleum) Tj ETQq1 1 0.7843	3104.1gBT /	'O ve rlock 10
236	CeO2-catalyzed transformation of various amine carbamates into organic urea derivatives in corresponding amine solvent. Applied Catalysis A: General, 2022, 643, 118747.	2.2	11
237	Ring-opening polymerization of trimethylene carbonate to poly(trimethylene carbonate) diol over a heterogeneous high-temperature calcined CeO2 catalyst. Chemical Communications, 2018, 54, 14017-14020.	2.2	10
238	Highly Efficient Production of Synthesis Gas by Catalytic Gasification of Biomass at Low Reaction Temperature Kagaku Kogaku Ronbunshu, 2002, 28, 666-672.	0.1	10
239	Combination of hydrotalcite-like-compound-derived Ni-Fe/Mg/Al and ceria-supported Rh catalysts for fuel reforming in exhaust gas recirculation system of gasoline engine. Fuel Processing Technology, 2022, 225, 107061.	3.7	10
240	Gasification of Cellulose over Rh/CeO ₂ /SiO ₂ Catalysts: Combustion of Coke and Reforming of Tar. Journal of the Japan Petroleum Institute, 2003, 46, 69-76.	0.4	9
241	Hydrogenolysis of tetrahydrofuran-2-carboxylic acid over tungsten-modified rhodium catalyst. Applied Catalysis A: General, 2020, 602, 117723.	2.2	9
242	Synthesis of diethyl carbonate from CO2 and orthoester promoted by a CeO2 catalyst and ethanol. Journal of CO2 Utilization, 2022, 55, 101818.	3.3	9
243	Highly Active BEA Catalyst for Catalytic Cracking of n-Heptane. Catalysis Letters, 2003, 89, 153-157.	1.4	8
244	Mechanism of Formation of Highly Dispersed Metallic Ruthenium Particles on Ceria Support by Heating and Reduction. Journal of Physical Chemistry C, 2019, 123, 20817-20828.	1.5	8
245	Synthesis of Secondary Monoalcohols from Terminal Vicinal Alcohols over Silica-Supported Rhenium-Modified Ruthenium Catalyst. ACS Sustainable Chemistry and Engineering, 2022, 10, 1220-1231.	3.2	8
246	Porous nanographene formation on γ-alumina nanoparticles <i>via</i> transition-metal-free methane activation. Chemical Science, 2022, 13, 3140-3146.	3.7	8
247	One-pot imine synthesis from methylarenes and anilines under air over heterogeneous Cu oxide-modified CeO2 catalyst. Chemical Communications, 2020, 56, 7337-7340.	2.2	7
248	Effect of flue gas impurities in carbon dioxide from power plants in the synthesis of isopropyl N-phenylcarbamate from CO2, aniline, and 2-propanol using CeO2 and 2-cyanopyridine. Catalysis Today, 2023, 410, 19-35.	2.2	7
249	Terpenoid-derived conjugated dienes with <i>exo</i> -methylene and a 6-membered ring: high cationic reactivity, regioselective living cationic polymerization, and random and block copolymerization with vinyl ethers. Polymer Chemistry, 2021, 12, 1186-1198.	1.9	6
250	Production of Synthesis Gas by Catalytic Partial Oxidation of Tar Derived from Pyrolysis of Spent Malt. Journal of the Japan Petroleum Institute, 2005, 48, 162-172.	0.4	6
251	Organic compound modification of CeO2 and 2-cyanopyridine hybrid catalyst in carbonate synthesis from CO2 and alcohols. Journal of CO2 Utilization, 2021, 54, 101744.	3.3	6
252	Heterogeneous Enantioselective Hydrogenation of Ketones by 2-Amino-2′-hydroxy-1,1′-binaphthyl-Modified CeO ₂ -Supported Ir Nanoclusters. ACS Catalysis, 2022, 12, 868-876.	5.5	6

#	Article	IF	CITATIONS
253	Reaction Mechanism of Deoxydehydration by Ceria-Supported Monomeric Rhenium Catalysts: A Computational Study. Journal of Physical Chemistry C, 2022, 126, 11566-11573.	1.5	6
254	Hydrogen Atom Abstraction by Heterogeneous–Homogeneous Hybrid Catalyst of CeO ₂ and 2-Cyanopyridine via Redox of CeO ₂ for C–H Bond Oxidation with Air. ACS Catalysis, 2021, 11, 11867-11872.	5.5	5
255	Dehydration of Amides to Nitriles over Heterogeneous Silicaâ€ S upported Molybdenum Oxide Catalyst. ChemCatChem, 2022, 14, .	1.8	5
256	Model and Terpenoid-Derived <i>exo</i> -Methylene Six-Membered Conjugated Dienes: Comprehensive Studies on Cationic and Radical Polymerizations of Substituted 3-Methylenecyclohexenes. Macromolecules, 2022, 55, 2300-2309.	2.2	5
257	Selective Conversion of Carbon Dioxide and Methanol to Dimethyl Carbonate Using Phosphoric Acid-Modified Zirconia Catalysts. ACS Symposium Series, 2002, , 71-84.	0.5	4
258	Vibrationally Excited CO2 Formed in CO + NO Reaction on Pd(110) Surface in High Surface Temperature Range. Catalysis Letters, 2005, 103, 179-184.	1.4	4
259	Production of Cellulose-derived Olefins and Applicability to Gasoline. Journal of the Japan Petroleum Institute, 2016, 59, 228-234.	0.4	4
260	Transformation of Diols to Ketones via Intramolecular Borrowing Hydrogen Mechanism. Chemistry Letters, 2017, 46, 1333-1336.	0.7	4
261	Adsorption of Keggin-Type Polyoxometalates on Rh Metal Particles under Reductive Conditions. Inorganic Chemistry, 2021, 60, 12413-12424.	1.9	4
262	Production of Diols from Biomass. Biofuels and Biorefineries, 2017, , 343-373.	0.5	4
263	Unique catalytic properties of Ni–Ir alloy for the hydrogenation of <i>N</i> -heteroaromatics. Catalysis Science and Technology, 2022, 12, 2420-2425.	2.1	4
264	Performance and Characterization of NiO-MgO Solid Solution Modified with Noble Metals in Oxidative Steam Reforming of Methane under Pressurized Conditions. ACS Symposium Series, 2007, , 59-72.	0.5	3
265	Interfacial conversion for poly(<i>para</i> â€phenylenevinylene) at a cholesteric liquid crystal surface. Journal of Applied Polymer Science, 2008, 107, 438-443.	1.3	3
266	Selective Câ^'C Hydrogenolysis of Alkylbenzenes to Methylbenzenes with Suppression of Ring Hydrogenation. ChemCatChem, 2018, 10, 4172-4181.	1.8	3
267	Hydrogenation of CO over RhVO4/SiO2 Catalyst. Detection and Elimination of Deposited Carbon and Regeneration of RhVO4 Journal of the Japan Petroleum Institute, 2002, 45, 251-255.	0.4	3
268	Oxidative Coupling of Methane on SrTi1-xMgxO3DELTA. Catalysts: Formation of Oxide Ion Defects and the Effect of Oxidizing Reagents on Catalytic Activity and Selectivity Kagaku Kogaku Ronbunshu, 1995, 21, 1024-1031.	0.1	2
269	Oxidative Coupling of Methane by Adsorbed Oxygen Species on SrTi _{1-<i>x</i>} Mg _{<i>x</i>} O _{3-<i>î´</i>} Catalysts. ACS Symposium Series, 1996, , 109-121.	0.5	2
270	Production of Renewable Hexanols from Mechanocatalytically Depolymerized Cellulose by Using Ir-ReOx/SiO2catalyst. ChemSusChem, 2015, 8, 571-571.	3.6	2

#	Article	IF	CITATIONS
271	Substrate Effect of Ir and Rh on Surface ReO _{<i>x</i>} Species under a Hydrogen Atmosphere Studied by NAP-XPS. Journal of Physical Chemistry C, 2022, 126, 11544-11552.	1.5	2
272	Novel Catalysts for Gasification of Biomass with High Energy Efficiency. Studies in Surface Science and Catalysis, 2004, 153, 85-90.	1.5	1
273	Promoting effect of the alloy formation over Ni-Fe/Al2O3 catalysts for the steam reforming of biomass tar to synthesis gas. Materials Research Society Symposia Proceedings, 2011, 1326, 1.	0.1	1
274	Modification of iridium catalyst with rhenium oxide for the hydrogenolysis of glycerol to 1,3-propanediol. Materials Research Society Symposia Proceedings, 2011, 1326, 1.	0.1	1
275	Across the Board: Keiichi Tomishige. ChemSusChem, 2019, 12, 1115-1117.	3.6	1
276	Effective Heterogeneous MoO x â€Modified CeO 2 Catalyst for Michael Addition of Dimethyl Malonate to 2â€Cyclohexenâ€1â€one. ChemCatChem, 2021, 13, 4075.	1.8	1
277	Molecular-beam Infrared Chemiluminescence Study of the Mechanism of CO ₂ Formation in Steady-state CO + NO Reaction on Single Crystal Pd Surfaces. Hyomen Kagaku, 2003, 24, 461-467.	0.0	0
278	IR Chemiluminescence Study of CO2 Formed during Steady-State CO Oxidation on Pt(110) and Pt(111) Surfaces. Hyomen Kagaku, 2006, 27, 442-448.	0.0	0
279	One-pot production of dioctyl ether from 1,2-octanediol over rutile-titania-supported palladium-tungsten catalyst. Molecular Catalysis, 2020, , 111208.	1.0	0
280	Catalytic Decomposition of N2O on Supported Rh Catalysts. The Oxygen Coverage Dependence on the Activity and the Mechanism of O2 Desorption Hyomen Kagaku, 2001, 22, 594-600.	0.0	0
281	Selective Catalytic Reduction of N2O with CH4 over Fe-BEA Catalysts-Reaction Intermediate and Reaction Mechanism Hyomen Kagaku, 2004, 25, 505-512.	0.0	0
282	Effect of Reductants in N2O Reduction and Analysis of Active Sites Over Fe-MFI Catalysts. Hyomen Kagaku, 2005, 26, 385-391.	0.0	0
283	Catalytic Transformations of Furfural and its Derived Compounds into Pentanediols. Sustainable Chemistry Series, 2018, , 91-109.	0.1	0
284	Hydrogenation of n-octanoic acid over the MoPt alloy of Mo-Pt/SiO2 catalyst. Organic and Biomolecular Chemistry, 0, , .	1.5	0